Wednesday, June 7, 2017

y' + 3x^2y = x^2y^3 Solve the Bernoulli differential equation.

y'+3x^2y=x^2y^3
Multiply the above equation by y^(-3)
y^(-3)dy/dx+3x^2y(y^(-3))=x^2
y^-3dy/dx+3x^2y^(-2)=x^2
Taking the transformation  v=y^(-2)
(dv)/dx=d/dy(y^(-2))*dy/dx
(dv)/dx=-2y^(-3)dy/dx
-1/2(dv)/dx=y^(-3)dy/dx
Now the Bernoulli equation is transformed as ,
-1/2(dv)/dx+3x^2v=x^2
(dv)/dx-6x^2v=-2x^2
Now the above is a linear equation in the dependent variable v and independent variable y.
The integrating factor is n(x)=e^(int(-6x^2dx))
=e^(-6x^3/3)
=e^(-2x^3)
Then,
e^(-2x^3)*(dv)/dx-6e^(-2x^3)*x^2v=-2e^(-2x^3)*x^2
d/dx(e^(-2x^3)*v)=e^(-2x^3)(dv)/dx+ve^(-2x^3)(-6x^2)
=e^(-2x^3)(dv)/dx-6e^(-2x^3)*x^2v
=-2e^(-2x^3)*x^2
intd/dx(e^(-2x^3)*v)dx=int-2e^(-2x^3)x^2dx
e^(-2x^3)*v=-2inte^(-2x^3)*x^2dx
Let t=x^3
dt=3x^2dx
e^(-2x^3)*v=-2inte^(-2t)*dt/3
=-2/3(e^(-2t)/(-2))+C
=e^(-2t)/3+C
Substitute back t=x^3
e^(-2x^3)*v=1/3e^(-2x^3)+C
Substitute back v=y^(-2)
e^(-2x^3)*y^(-2)=1/3e^(-2x^3)+C
y^-2=1/3+C/e^(-2x^3)
1/y^2=1/3+Ce^(2x^3)
 y^2 = 1 / (1/3+Ce^(2x^3))
y = +-sqrt(3)/(Ce^(2x^3) + 1)

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...