Wednesday, June 28, 2017

Single Variable Calculus, Chapter 7, 7.2-2, Section 7.2-2, Problem 42

Find $f''(e)$ if $\displaystyle f(x) = \frac{\ln x}{x}$


$
\begin{equation}
\begin{aligned}

\text{if } f(x) =& \frac{\ln x}{x}, \text{ then by using Quotient Rule}
\\
\\
f'(x) =& \frac{\displaystyle x \cdot \frac{d}{dx} (\ln x) - (\ln x) \cdot \frac{d}{dx} (x) }{x^2 }
\\
\\
f'(x) =& \frac{\displaystyle x \left( \frac{1}{x} \right) - \ln x (1)}{x^2}
\\
\\
f'(x) =& \frac{1 - \ln x}{x^2}

\end{aligned}
\end{equation}
$


Again, by using Quotient Rule


$
\begin{equation}
\begin{aligned}

f''(x) =& \frac{\displaystyle x^2 \cdot \frac{d}{dx} (1 - \ln x) - (1 - \ln x) \cdot \frac{d}{dx} (x^2)}{(x^2)^2 }
\\
\\
f''(x) =& \frac{\displaystyle x^2 \left( - \frac{1}{x} \right) - (1 - \ln x)(2x)}{x^4}
\\
\\
f''(x) =& \frac{x(-1 - 2 + 2 \ln x)}{x^4}
\\
\\
f''(x) =& \frac{-3 + 2 \ln x}{x^3}

\end{aligned}
\end{equation}
$


Thus,


$
\begin{equation}
\begin{aligned}

f''(e) =& \frac{-3 + 2 \ln (e)}{e^3}
\\
\\
f''(e) =& \frac{-3 + 2 (1)}{e^3}
\\
\\
f''(e) =& \frac{-1}{e^3}


\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...