Monday, June 19, 2017

y = log_10((x^2-1)/x) Find the derivative of the function

y=log_10((x^2-1)/x)
The derivative formula of a logarithm is
d/dx[log_a (u)] = 1/(ln(a) * u)* (du)/dx
Applying this formula, the derivative of the function will be
(dy)/dx = d/dx[log_10 ((x^2-1)/x)]
(dy)/dx =1/(ln (10) * ((x^2-1)/x)) * d/dx ((x^2-1)/x)
(dy)/dx = x/((x^2-1)ln(10) ) * d/dx((x^2-1)/x)
To get the derivative of (x^2-1)/x, apply quotient rule d/dx ((f(x))/(g(x))) = (g(x)*f'(x) - f(x)*g'(x))/[g(x)]^2 .
(dy)/dx = x/((x^2-1)ln(10) ) * (x*2x - (x^2-1)*1)/x^2
(dy)/dx = x/((x^2-1)ln(10)) * (2x^2 - x^2 + 1)/x^2
(dy)/(dx) = x/((x^2-1)ln(10)) * (x^2+1)/x^2
(dy)/dx = 1/((x^2-1)ln(10)) * (x^2+1)/x
(dy)/dx = (x^2+1)/(x(x^2-1)ln(10))
 
Therefore, the derivative of the function is (dy)/dx = (x^2+1)/(x(x^2-1)ln(10)) .

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...