Maclaurin series is a special case of Taylor series that is centered at a=0 . The expansion of the function about 0 follows the formula:
f(x)=sum_(n=0)^oo (f^n(0))/(n!) x^n
or
f(x)= f(0)+(f'(0)x)/(1!)+(f^2(0))/(2!)x^2+(f^3(0))/(3!)x^3+(f^4(0))/(4!)x^4 +...
To determine the Maclaurin polynomial of degree n=5 for the given function f(x)=e^(-x) , we may apply the formula for Maclaurin series..
To list f^n(x) , we may apply derivative formula for exponential function: d/(dx) e^u = e^u * (du)/(dx) .
Let u =-x then (du)/(dx)= -1
Applying the values on the derivative formula for exponential function, we get:
d/(dx) e^(-x) = e^(-x) *(-1)
= -e^(-x)
Applying d/(dx) e^(-x)= -e^(-x) for each f^n(x) , we get:
f'(x) = d/(dx) e^(-x)
=-e^(-x)
f^2(x) = d/(dx) (- e^(-x))
=-1 *d/(dx) e^(-x)
=-1 *(-e^(-x))
=e^(-x)
f^3(x) = d/(dx) e^(-x)
=-e^(-x)
f^4(x) = d/(dx) (- e^(-x))
=-1 *d/(dx) e^(-x)
=-1 *(-e^(-x))
=e^(-x)
f^5(x) = d/(dx) e^(-x)
=-e^(-x)
Plug-in x=0 , we get:
f(0) =e^(-0) =1
f'(0) =-e^(-0)=-1
f^2(0) =e^(-0)=1
f^3(0) =-e^(-0)=-1
f^4(0) =e^(-0)=1
f^5(0) =-e^(-0)=-1
Note: e^(-0)=e^0 =1 .
Plug-in the values on the formula for Maclaurin series, we get:
f(x)=sum_(n=0)^5 (f^n(0))/(n!) x^n
= 1+(-1)/(1!)x+1/(2!)x^2+(-1)/(3!)x^3+1/(4!)x^4+(-1)/(5!)x^5
= 1-1/1x+1/2x^2-1/6x^3+1/24x^4-1/120x^5
= 1-x+x^2/2-x^3/6+x^4/24 -x^5/120
The Maclaurin polynomial of degree n=5 for the given function f(x)=e^(-x) will be:
P_5(x)=1-x+x^2/2-x^3/6+x^4/24 -x^5/120
Saturday, June 24, 2017
Calculus of a Single Variable, Chapter 9, 9.7, Section 9.7, Problem 14
Subscribe to:
Post Comments (Atom)
Why is the fact that the Americans are helping the Russians important?
In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...
-
There are a plethora of rules that Jonas and the other citizens must follow. Again, page numbers will vary given the edition of the book tha...
-
The poem contrasts the nighttime, imaginative world of a child with his daytime, prosaic world. In the first stanza, the child, on going to ...
-
The given two points of the exponential function are (2,24) and (3,144). To determine the exponential function y=ab^x plug-in the given x an...
-
Robinson Crusoe, written by Daniel Defoe, is a novel. A novel is a genre defined as a long imaginative work of literature written in prose. ...
-
Hello! This expression is already a sum of two numbers, sin(32) and sin(54). Probably you want or express it as a product, or as an expressi...
-
A tempest is a violent storm and considering that the first scene of the play takes place in such a storm, the title is quite fitting. It is...
-
Macbeth is reflecting on the Weird Sisters' prophecy and its astonishing accuracy. The witches were totally correct in predicting that M...
No comments:
Post a Comment