Saturday, June 24, 2017

Calculus of a Single Variable, Chapter 9, 9.7, Section 9.7, Problem 14

Maclaurin series is a special case of Taylor series that is centered at a=0 . The expansion of the function about 0 follows the formula:
f(x)=sum_(n=0)^oo (f^n(0))/(n!) x^n
or
f(x)= f(0)+(f'(0)x)/(1!)+(f^2(0))/(2!)x^2+(f^3(0))/(3!)x^3+(f^4(0))/(4!)x^4 +...
To determine the Maclaurin polynomial of degree n=5 for the given function f(x)=e^(-x) , we may apply the formula for Maclaurin series..
To list f^n(x) , we may apply derivative formula for exponential function: d/(dx) e^u = e^u * (du)/(dx) .
Let u =-x then (du)/(dx)= -1
Applying the values on the derivative formula for exponential function, we get:
d/(dx) e^(-x) = e^(-x) *(-1)
= -e^(-x)
Applying d/(dx) e^(-x)= -e^(-x) for each f^n(x) , we get:
f'(x) = d/(dx) e^(-x)
=-e^(-x)
f^2(x) = d/(dx) (- e^(-x))
=-1 *d/(dx) e^(-x)
=-1 *(-e^(-x))
=e^(-x)
f^3(x) = d/(dx) e^(-x)
=-e^(-x)
f^4(x) = d/(dx) (- e^(-x))
=-1 *d/(dx) e^(-x)
=-1 *(-e^(-x))
=e^(-x)
f^5(x) = d/(dx) e^(-x)
=-e^(-x)
Plug-in x=0 , we get:
f(0) =e^(-0) =1
f'(0) =-e^(-0)=-1
f^2(0) =e^(-0)=1
f^3(0) =-e^(-0)=-1
f^4(0) =e^(-0)=1
f^5(0) =-e^(-0)=-1
Note: e^(-0)=e^0 =1 .
Plug-in the values on the formula for Maclaurin series, we get:
f(x)=sum_(n=0)^5 (f^n(0))/(n!) x^n
= 1+(-1)/(1!)x+1/(2!)x^2+(-1)/(3!)x^3+1/(4!)x^4+(-1)/(5!)x^5
= 1-1/1x+1/2x^2-1/6x^3+1/24x^4-1/120x^5
= 1-x+x^2/2-x^3/6+x^4/24 -x^5/120
The Maclaurin polynomial of degree n=5 for the given function f(x)=e^(-x) will be:
P_5(x)=1-x+x^2/2-x^3/6+x^4/24 -x^5/120

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...