Thursday, June 22, 2017

Calculus of a Single Variable, Chapter 8, 8.4, Section 8.4, Problem 34

Indefinite integral are written in the form of int f(x) dx = F(x) +C
where: f(x) as the integrand
F(x) as the anti-derivative function of f(x)
C as the arbitrary constant known as constant of integration

To determine the indefinite integral of int (x^3+x+1)/(x^4+2x^2+1) dx , we apply partial fraction decomposition to expand the integrand: f(x)=(x^3+x+1)/(x^4+2x^2+1) .
The pattern on setting up partial fractions will depend on the factors of the denominator. For the given problem, the denominator is in a similar form of perfect squares trinomial: x^2+2xy+y^2= (x+y)^2
Applying the special factoring on (x^4+2x^2+1) , we get: (x^4+2x+1)= (x^2+1)^2 .
For the repeated quadratic factor (x^2+1)^2 , we will have partial fraction: (Ax+B)/(x^2+1) +(Cx+D)/(x^2+1)^2 .
The integrand becomes:
(x^3+x+1)/(x^4+2x^2+1)=(Ax+B)/(x^2+1) +(Cx+D)/(x^2+1)^2
Multiply both sides by the LCD =(x^2+1)^2 :
((x^3+x+1)/(x^4+2x^2+1)) *(x^2+1)^2=((Ax+B)/(x^2+1) +(Cx+D)/(x^2+1)^2)*(x^2+1)^2
x^3+x+1=(Ax+B)(x^2+1) +Cx+D
x^3+x+1=Ax^3 +Ax+Bx^2+B+Cx+D
x^3+0x^2 + x+1=Ax^3 +Ax+Bx^2+B+Cx+D
Equate the coefficients of similar terms on both sides to list a system of equations:
Terms with x^3 : 1 = A
Terms with x^2 : 0=B
Terms with x : 1 = A+C
Plug-in A =1 on 1 =A+C , we get:
1 =1+C
C =1-1
C =0
Constant terms: 1=B+D
Plug-in B =0 on 1 =B+D , we get:
1 =0+D
D =1
Plug-in the values of A =1 , B=0 , C=0 , and D=1 , we get the partial fraction decomposition:
(x^3+x+1)/(x^4+2x^2+1)=(1x+0)/(x^2+1) +(0x+1)/(x^2+1)^2
=x/(x^2+1) +1/(x^2+1)^2
Then the integral becomes:
int (x^3+x+1)/(x^4+2x^2+1) dx = int [x/(x^2+1) +1/(x^2+1)^2] dx
Apply the basic integration property: int (u+v) dx = int (u) dx +int (v) dx.
int [x/(x^2+1) +1/(x^2+1)^2] dx=int x/(x^2+1)dx +int 1/(x^2+1)^2 dx
For the first integral, we apply integration formula for rational function as:
int u /(u^2+a^2) du = 1/2ln|u^2+a^2|+C
Then, int x/(x^2+1)dx=1/2ln|x^2+1|+C or (ln|x^2+1|)/2+C
For the second integral, we apply integration by trigonometric substitution.
We let x = tan(u) then dx= sec^2(u) du
Plug-in the values, we get:
int 1/(x^2+1)^2 dx = int 1 /(tan^2(u)+1)^2 * sec^2(u) du
Apply the trigonometric identity: tan^2(u) +1 = sec^2(u) and trigonometric property: 1/(sec^2(u)) =cos^2(u)
int 1 /(tan^2(u)+1)^2 * sec^(u) du =int 1 /(sec^2(u))^2 * sec^2(u) du
= int 1 /(sec^4(u)) * sec^2(u) du
=int 1/(sec^2(u)) du
= int cos^2(u) du
Apply the integration formula for cosine function: int cos(x) dx = 1/2[x+sin(x)cos(x)]+C
int cos^2(u) du= 1/2[u+sin(u)cos(u)]+C
Based from x= tan(u) then :
u =arctan(x)
sin(u) = x/sqrt(x^2+1)
cos(u) =1/sqrt(x^2+1)
Then the integral becomes:
int 1/(x^2+1)^2dx
= 1/2[arctan(x) + (x/sqrt(x^2+1))*(1/sqrt(x^2+1))]
=arctan(x)/2+x/(2x^2+2)
Combining the results, we get:
int (x^3+x+1)/(x^4+2x^2+1) dx =(ln|x^2+1|)/2+arctan(x)/2+x/(2x^2+2)+C

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...