Tuesday, June 27, 2017

Single Variable Calculus, Chapter 5, 5.2, Section 5.2, Problem 10

Estimate $\displaystyle \int^{\frac{\pi}{2}}_0 \cos ^4x dx, n = 4$ using Midpoint Rule

The width of each sub-intervals is given to be $\displaystyle \Delta x = \frac{\displaystyle \frac{\pi}{2} - 0}{4} = \frac{\pi}{8}$. So the endpoints of the four sub-intervals are $\displaystyle 0, \frac{\pi}{8}, \frac{\pi}{4}, \frac{3 \pi}{8}$ and $\displaystyle \frac{\pi}{2}$. Thus, the midpoints are $\displaystyle \left( \frac{\displaystyle 0 + \frac{\pi}{8} }{2}\right) = \frac{\pi}{16}, \left( \frac{\displaystyle \frac{\pi}{8} + \frac{\pi}{4}}{2} \right) = \frac{3 \pi}{16}, \left( \frac{\displaystyle \frac{\pi}{4} + \frac{3 \pi}{8}}{2} \right) = \frac{5 \pi}{16}, \left( \frac{3 \pi}{8} + \frac{\pi}{2} \right) = \frac{7 \pi}{16}$.

Therefore, the Midpoint Rule gives..



$
\begin{equation}
\begin{aligned}

\displaystyle \int^{\frac{\pi}{2}}_0 \cos^4 x dx \approx & \Delta x \left[ f\left( \frac{\pi}{16} \right) + f \left( \frac{3 \pi}{16} \right) + f \left( \frac{5 \pi}{16} \right) + f \left( \frac{7 \pi}{16} \right) \right]
\\
\\
\approx & \frac{\pi}{8} [0.9253 + 0.4780 + 0.0953 + 0.0014]
\\
\\
\approx & 0.5891

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...