Tuesday, June 27, 2017

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 28

Determine the integral $\displaystyle \int \tan^3 (2x) \sec^5 (2x) dx$

Let $u = 2x$, then $du = 2 dx$, so $\displaystyle dx = \frac{du}{2}$. Thus,


$
\begin{equation}
\begin{aligned}

\int \tan^3 (2x) \sec^5 (2x) dx =& \int \tan^3 u \sec^5 u \cdot \frac{du}{2}
\\
\\
\int \tan^3 (2x) \sec^5 (2x) dx =& \frac{1}{2} \int \tan^3 u \sec^5 u du
\\
\\
\int \tan^3 (2x) \sec^5 (2x) dx =& \frac{1}{2} \int \tan^2 u \sec^4 u \sec u \tan u du
\qquad \text{Apply Trigonometric Identity } \sec^2 u = \tan^2 u + 1 \text{ for } \tan^2 u
\\
\\
\int \tan^3 (2x) \sec^5 (2x) dx =& \frac{1}{2} \int (\sec^2 u - 1) \sec^4 u \sec u \tan u du
\\
\\
\int \tan^3 (2x) \sec^5 (2x) dx =& \frac{1}{2} \int (\sec^6 u - \sec^4 u) \sec u \tan u du

\end{aligned}
\end{equation}
$


Let $v = \sec u$, then $dv = \sec u \tan u du$. Thus,


$
\begin{equation}
\begin{aligned}

\frac{1}{2} \int (\sec^6 u - \sec^4 u) \sec u \tan u du =& \frac{1}{2} \int (v^6 - v^4) dv
\\
\\
\frac{1}{2} \int (\sec^6 u - \sec^4 u) \sec u \tan u du =& \frac{1}{2} \left( \frac{v^{6 + 1}}{6 + 1} - \frac{v^{4 + 1}}{4+1} \right) + c
\\
\\
\frac{1}{2} \int (\sec^6 u - \sec^4 u) \sec u \tan u du =& \frac{1}{2} \left( \frac{v^7}{7} - \frac{v^5}{5} \right) + c
\\
\\
\frac{1}{2} \int (\sec^6 u - \sec^4 u) \sec u \tan u du =& \frac{v^7}{14} - \frac{v^5}{10} + c
\qquad \text{Substitute value of } v
\\
\\
\frac{1}{2} \int (\sec^6 u - \sec^4 u) \sec u \tan u du =& \frac{(\sec u)^7}{14} - \frac{(\sec u)^5}{10} + c
\\
\\
\frac{1}{2} \int (\sec^6 u - \sec^4 u) \sec u \tan u du =& \frac{\sec^7 u}{14} - \frac{\sec^5 u}{10} + c
\qquad \text{Substitute value of } u
\\
\\
\frac{1}{2} \int (\sec^6 u - \sec^4 u) \sec u \tan u du =& \frac{\sec^7 (2x)}{14} - \frac{\sec^5 (2x)}{10} + c


\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...