Tuesday, June 27, 2017

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 28

Determine the integral tan3(2x)sec5(2x)dx

Let u=2x, then du=2dx, so dx=du2. Thus,


tan3(2x)sec5(2x)dx=tan3usec5udu2tan3(2x)sec5(2x)dx=12tan3usec5udutan3(2x)sec5(2x)dx=12tan2usec4usecutanuduApply Trigonometric Identity sec2u=tan2u+1 for tan2utan3(2x)sec5(2x)dx=12(sec2u1)sec4usecutanudutan3(2x)sec5(2x)dx=12(sec6usec4u)secutanudu


Let v=secu, then dv=secutanudu. Thus,


12(sec6usec4u)secutanudu=12(v6v4)dv12(sec6usec4u)secutanudu=12(v6+16+1v4+14+1)+c12(sec6usec4u)secutanudu=12(v77v55)+c12(sec6usec4u)secutanudu=v714v510+cSubstitute value of v12(sec6usec4u)secutanudu=(secu)714(secu)510+c12(sec6usec4u)secutanudu=sec7u14sec5u10+cSubstitute value of u12(sec6usec4u)secutanudu=sec7(2x)14sec5(2x)10+c

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...