Tuesday, June 27, 2017

Single Variable Calculus, Chapter 2, 2.3, Section 2.3, Problem 29

Determine the $\displaystyle \lim \limits_{t \to 0} \left( \frac{1}{t \sqrt{1 + t}} - \frac{1}{t} \right)$, if it exists.


$
\begin{equation}
\begin{aligned}

& \lim \limits_{t \to 0} \left( \frac{1}{t \sqrt{1 + t}} - \frac{1}{t} \right)
= \lim \limits_{t \to 0} \frac{1 - \sqrt{1 + t}}{t \sqrt{1 + t}}
&& \text{ Get the LCD.}\\
\\
& \lim \limits_{t \to 0} \frac{1 - \sqrt{1 + t}}{t \sqrt{1 + t}} \cdot
\frac{1 + \sqrt{1 + t}}{1 + \sqrt{1 + t}}
= \lim \limits_{t \to 0} \frac{1 - (1 + t)}{t(\sqrt{1 + t})(1 + \sqrt{1 + t})}
&& \text{ Multiply the numerator and the denominator by $1 + \sqrt{1 + t}$ and simplify.}\\
\\
& \lim \limits_{t \to 0} \frac{-1}{(\sqrt{1 + t})(1 + \sqrt{1 + t})}
= \frac{-1}{(\sqrt{1 + 0})(1 + \sqrt{1 + 0})}
= \frac{-1}{(\sqrt{1})(1+\sqrt{1})}
= \frac{-1}{(1)(2)}
= \frac{-1}{2}
&& \text{ Substitute value of $t$ and simplify}\\
\\
& \fbox{$ \lim \limits_{t \to 0} \displaystyle \left( \frac{1}{t\sqrt{1 + t}} - \frac{1}{t} \right) = -\frac{1}{2}$}


\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...