Thursday, June 22, 2017

Calculus of a Single Variable, Chapter 8, 8.4, Section 8.4, Problem 61

Arc length of curve can be denoted as "S ". We can determine it by using integral formula on a closed interval [a,b] as: S = int_a^b ds
where:
ds = sqrt(1+ ((dy)/(dx))^2 )dx if y=f(x)
or
ds = sqrt(1+((dx)/(dy))^2) dy if x=h(y)
a = lower boundary of the closed interval
b =upper boundary of the closed interval

From the given problem: y =ln(x), [1,5] , we determine that the boundary values are:
a= 1 and b=5
Note that y= ln(x) follows y=f(x) then the formula we will follow can be expressed as S =int_a^bsqrt(1+ ((dy)/(dx))^2 )dx
For the derivative of y or (dy)/(dx) , we apply the derivative formula for logarithm:
d/(dx)y= d/(dx) ln(x)
(dy)/(dx)= 1/x
Then ((dy)/(dx))^2= (1/x)^2 or 1/x^2 .
Plug-in the values on integral formula for arc length of a curve, we get:
S =int_1^5sqrt(1+1/x^2 )dx
Let 1 = x^2/x^2 then we get:
S=int_1^5sqrt(x^2/x+1/x^2 )dx
=int_1^5sqrt((x^2+1)/x^2 )dx
=int_1^5sqrt(x^2+1)/sqrt(x^2 )dx
=int_1^5sqrt(x^2+1)/sqrt(x^2 )dx
=int_1^5sqrt(x^2+1)/xdx
From the integration table, we follow the formula for rational function with roots:
int sqrt(x^2+a^2)/x dx = sqrt(x^2+a^2)-a*ln|(a+sqrt(x^2+a^2))/x| .
Applying the integral formula with a^2=1 then a=1, we get:
int_1^5sqrt(x^2+1)/xdx = [sqrt(x^2+1)-1*ln|(1+sqrt(x^2+1))/x|]|_1^5
= [sqrt(x^2+1)-ln|(1+sqrt(x^2+1))/x|]|_1^5
Apply the definite integral formula: F(x)|_a^b= F(b)-F(a) .
[sqrt(x^2+1)-ln|(1+sqrt(x^2+1))/x|]|_1^5
=[sqrt(5^2+1)-ln|(1+sqrt(5^2+1))/5|]-[sqrt(1^2+1)-ln|(1+sqrt(1^2+1))/1|]
=[sqrt(25+1)-ln|(1+sqrt(25+1))/5|]-[sqrt(1+1)-ln|(1+sqrt(1+1))/1|]
=[sqrt(26)-ln|(1+sqrt(26))/5|]-[sqrt(2)-ln|1+sqrt(2)|]
=sqrt(26)-ln|(1+sqrt(26))/5| -sqrt(2)+ln|1+sqrt(2)|
Apply logarithm property: ln(x)-ln(y) = ln(x/y) .
S =sqrt(26)-sqrt(2)+ln|1+sqrt(2)|-ln|(1+sqrt(26))/5|
S =sqrt(26)-sqrt(2)+ln|(1+sqrt(2))/(((1+sqrt(26))/5))|
S =sqrt(26)-sqrt(2)+ln|(5*(1+sqrt(2)))/(1+sqrt(26))|
S =sqrt(26)-sqrt(2)+ln|(5+5sqrt(2))/(1+sqrt(26))|
S~~4.37

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...