Saturday, June 24, 2017

College Algebra, Chapter 8, Review Exercises, Section Review Exercises, Problem 32

Identify the type of curve which is represented by the equation $\displaystyle \frac{x^2}{12} + \frac{y^2}{144} = \frac{y}{12}$.
Find the foci and vertices(if any), and sketch the graph

$
\begin{equation}
\begin{aligned}
12x^2 + y^2 &= 12 y && \text{Multiply by } 144\\
\\
12x^2 + y^2 - 12y &= 0 && \text{Subtract }12y \\
\\
12x^2 + y^2 - 12y + 36 &= 36 && \text{Complete the square: Add } \left( \frac{-12}{2} \right)^2 = 36\\
\\
12x^2 + (y - 6)^2 &= 36 && \text{Perfect square}\\
\\
\frac{x^2}{3} + \frac{(y-6)^2}{36} &= 1 && \text{Divide by } 36
\end{aligned}
\end{equation}
$

Since the equation is a sum of the squares, then it is an ellipse. The shifted ellipse has the form $\displaystyle \frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1$
with center at $(h,k)$ and vertical major axis. It is derived from the ellipse $\displaystyle \frac{x^2}{3} + \frac{y^2}{36} = 1$ with center at origin by
shifting it $6$ units upward. Thus, by applying transformation

$
\begin{equation}
\begin{aligned}
\text{center } & (h,k) && \rightarrow && (0,6)\\
\\
\text{vertices:major axis } & (0,a)&& \rightarrow && (0,6) && \rightarrow && (0,6+6) && = && (0,12)\\
\\
& (0,-a)&& \rightarrow && (0,-6) && \rightarrow && (0,-6+6) && = && (0,0)\\
\\
\text{minor axis } & (b,0)&& \rightarrow && (\sqrt{3},0) && \rightarrow && (\sqrt{3},0+6) && = && (\sqrt{3},6)\\
\\
& (-b,0)&& \rightarrow && (-\sqrt{3},0) && \rightarrow && (-\sqrt{3},0+6) && = && (\sqrt{3},6)
\end{aligned}
\end{equation}
$

The foci of the unshifted ellipse are determined by $c = \sqrt{a^2 - b^2} = \sqrt{3c - 3} = \sqrt{33}$
Thus, by applying transformation

$
\begin{equation}
\begin{aligned}
\text{minor axis } & (0,c)&& \rightarrow && (0,\sqrt{33}) && \rightarrow && (0,\sqrt{33}+6) && = && (0,6+\sqrt{33})\\
\\
& (0,-c)&& \rightarrow && (0,-\sqrt{33}) && \rightarrow && (0,\sqrt{33}+6) && = && (0,6-\sqrt{33})
\end{aligned}
\end{equation}
$

Therefore, the graph is

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...