Sunday, June 18, 2017

Calculus: Early Transcendentals, Chapter 7, 7.2, Section 7.2, Problem 28

inttan^5(x)sec^3(x)dx
Rewrite the integrand as,
=inttan^4(x)tanx(x)sec^3(x)dx
Now use the identity: tan^2(x)=sec^2(x)-1
=int(sec^2(x)-1)^2sec^3(x)tan(x)dx
Now apply the integral substitution,
Let u=sec(x)
du=sec(x)tan(x)dx
=int(u^2-1)^2u^2du
=int(u^4-2u^2+1)u^2u
=int(u^6-2u^4+u^2)du
=intu^6du-2intu^4du+intu^2du
=u^7/7-2(u^5/5)+u^3/3
Substitute back u=sec(x)
=1/7sec^7(x)-2/5sec^5(x)+1/3sec^3(x)
Add a constant C to the solution,
=1/7sec^7(x)-2/5sec^5(x)+1/3sec^3(x)+C

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...