Wednesday, June 28, 2017

College Algebra, Chapter 1, 1.7, Section 1.7, Problem 44

Solve the inequality $\displaystyle 2\left| \frac{1}{2}x + 3 \right| +3 \leq 51$. Express the answer using interval notation.

$
\begin{equation}
\begin{aligned}
2\left| \frac{1}{2}x + 3 \right| +3 &\leq 51\\
\\
2\left| \frac{1}{2}x + 3 \right| &\leq 48 && \text{Subtract 3}\\
\\
\left| \frac{1}{2}x + 3 \right| &\leq 24 && \text{Divide by 2}
\end{aligned}
\end{equation}
$



We have,


$
\begin{equation}
\begin{aligned}
\frac{1}{2}x + 3 &\leq 24 && \text{and}& -\left( \frac{1}{2}x + 3 \right) &\leq 24 && \text{Divide each side by -1}\\
\\
\frac{1}{2}x + 3 &\leq 24 && \text{and}& \frac{1}{2}x + 3 &\geq -24 && \text{Subtract 3}\\
\\
\frac{1}{2}x &\leq 21 && \text{and}& \frac{1}{2}x &\geq - 27 && \text{Multiply by 2}\\
\\
x &\leq 42 && \text{and}& x &\geq -54
\end{aligned}
\end{equation}
$


The solution set is $[-54,42]$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...