Saturday, June 10, 2017

Single Variable Calculus, Chapter 7, 7.6, Section 7.6, Problem 26

Determine the derivative of the function $y = \sqrt{x^2 - 1} \sec^{-1}(x)$ and simplify if possible.
If $y = \sqrt{x^2 - 1} \sec^{-1}(x)$, then by applying product rule and chain rule...

$
\begin{equation}
\begin{aligned}
y' &= (x^2 -1)^{\frac{1}{2}} \cdot \frac{d}{dx} \sec^{-1}(x) + \sec^{-1}(x) \cdot \frac{d}{dx} (x^2 -1)^{\frac{1}{2}}\\
\\
y' &= (x^2 -1)^{\frac{1}{2}} \cdot \left( \frac{1}{x\sqrt{x^2 - 1}} \right) + \sec^{-1}(x) \cdot \left[ \frac{1}{2}(x^2-1)^{-\frac{1}{2}} (2x) \right]\\
\\
y' &= \frac{1}{x} + \frac{x\sec^{-1}(x)}{\sqrt{x^2-1}}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...