Monday, June 5, 2017

int x^5e^(x^2) dx Find the indefinite integral by using substitution followed by integration by parts.

To evaluate the given integral problem int x^5e^((x^2))dx using u-substituion, we may let:
u = x^2 then du = 2x dx  or (du)/2 = x dx
Note that x^5 = x^2*x^2*x  or   (x^2)^2 *x then
x^5dx = (x^2)^2 * x dx
Then, the integral becomes:
int x^5e^((x^2))dx =int (x^2)^2 * e^((x^2)) * xdx
 Plug-in  u = x^2 then du = 2x dx , we get: 
int (x^2)^2 * e^((x^2)) * xdx =int (u)^2 * e^(u) * (du)/2
Apply the basic integration property: int c*f(x) dx = c int f(x) dx .
int (u)^2 * e^(u) * (du)/2= 1/2int (u)^2 * e^(u) du
Apply formula for integration by parts: int f*g'=f*g - int g*f' .
Let: f =u^2 then f' =2udu
       g' =e^u du then  g=e^u
Applying the formula for integration by parts, we get:
1/2int (u)^2 * e^(u) du =1/2*[ u^2 *e^u - int e^u * 2u du]
                             =1/2*[ u^2 e^u - 2 int e^u *u du]
                              = ( u^2 e^u )/2- 2/2 int e^u *u du
                              = ( u^2 e^u )/2- int e^u *u du
Apply another set of integration by parts on int e^u *u du  by letting:
      f =u then f’ = du
       g’ = e^u du then g = e^u
Then, 
int e^u *u du = u*e^u - int e^u du
                       = ue^u - e^u+C
Applying  int e^u *u du =ue^u - e^u+C , we get:
1/2int (u)^2 * e^(u) du =( u^2 e^u )/2- int e^u *u du
                             =( u^2 e^u )/2-[ue^u - e^u] +C
                              =( u^2 e^u )/2-ue^u + e^u +C
Plug-in u = x^2 on  ( u^2 e^u )/2-ue^u + e^u +C , we get the complete indefinite integral as:
int x^5e^((x^2))dx =((x^2)^2 e^((x^2)) )/2-x^2e^((x^2)) + e^((x^2)) +C
                           = (x^4 e^(x^2) )/2-x^2e^(x^2) + e^(x^2) +C

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...