Determine the integral $\displaystyle \int^{\pi}_0 \sin^2 t \cos^4 t dt$
$
\begin{equation}
\begin{aligned}
\int^{\pi}_0 \sin^2 t \cos^4 t dt =& \int^{\pi}_0 \sin^2 t (\cos^2 t)^2 dt
\qquad \text{Apply half-angle formulas } \cos 2 t = 1 - 2 \sin^2 t \text{ and } \cos 2t = 2 \cos^2 t - 1
\\
\\
\int^{\pi}_0 \sin^2 t \cos^4 t dt =& \int^{\pi}_0 \left( \frac{1 - \cos 2 t}{2} \right)\left( \frac{\cos 2 t + 1}{2} \right)^2 dt
\\
\\
\int^{\pi}_0 \sin^2 t \cos^4 t dt =& \int^{\pi}_0 \left( \frac{1 - \cos 2t}{2}\right) \left( \frac{\cos^2 2 t + 2 \cos 2t + 1}{4} \right) dt
\\
\\
\int^{\pi}_0 \sin^2 t \cos^4 t dt =& \int^{\pi}_0 \left( \frac{\cos^2 2t + 2 \cos 2 t + 1 - \cos^3 2t - 2 \cos^2 2t - \cos 2 t }{8} \right) dt
\\
\
\int^{\pi}_0 \sin^2 t \cos^4 t dt =& \frac{1}{8} \int^{\pi}_0 (1 + \cos 2t - \cos^2 2t - \cos^3 2 t) dt
\\
\\
\int^{\pi}_0 \sin^2 t \cos^4 t dt =& \frac{1}{8} \int^{\pi}_0 1 dt + \frac{1}{8} \int^{\pi}_0 \cos 2t dt - \frac{1}{8} \int^{\pi}_0 \cos^2 2t dt - \frac{1}{8} \int^{\pi}_0 \cos^3 2t dt
\end{aligned}
\end{equation}
$
Let $u = 2t$, then $du = 2dt$, so $\displaystyle dt = \frac{du}{2}$. When $t = 0, u = 0$ and when $t = \pi, u = 2 \pi$. We integrate the equation term by term
@ 1st term
$
\begin{equation}
\begin{aligned}
\frac{1}{8} \int^{\pi}_0 1 dt =& \frac{1}{8} \int^{2 \pi}_0 1 \cdot \frac{du}{2}
\\
\\
\frac{1}{8} \int^{\pi}_0 1 dt =& \frac{1}{16} \int^{2 \pi}_0 1 du
\\
\\
\frac{1}{8} \int^{\pi}_0 1 dt =& \frac{1}{16} \left[ u \right]^{2 \pi}_0
\\
\\
\frac{1}{8} \int^{\pi}_0 1 dt =& \frac{1}{16} (2 \pi - 0)
\\
\\
\frac{1}{8} \int^{\pi}_0 1 dt =& \frac{2 \pi}{16}
\\
\\
\frac{1}{8} \int^{\pi}_0 1 dt =& \frac{\pi}{8}
\end{aligned}
\end{equation}
$
@ 2nd term
$
\begin{equation}
\begin{aligned}
\frac{1}{8} \int^{\pi}_0 \cos 2t dt =& \frac{1}{8} \int^{2 \pi}_0 \cos u \cdot \frac{du}{2}
\\
\\
\frac{1}{8} \int^{\pi}_0 \cos 2t dt =& \frac{1}{16} \int^{2 \pi}_0 \cos u du
\\
\\
\frac{1}{8} \int^{\pi}_0 \cos 2t dt =& \frac{1}{16} \left[ \sin u \right]^{2 \pi}_0
\\
\\
\frac{1}{8} \int^{\pi}_0 \cos 2t dt =& \frac{1}{16} (\sin 2 \pi - \sin 0)
\\
\\
\frac{1}{8} \int^{\pi}_0 \cos 2t dt =& \frac{1}{16} (0)
\\
\\
\frac{1}{8} \int^{\pi}_0 \cos 2t dt =& 0
\end{aligned}
\end{equation}
$
@ 3rd term
$
\begin{equation}
\begin{aligned}
\frac{1}{8} \int^{\pi}_0 \cos^2 2t dt =& \frac{1}{8} \int^{2 \pi}_0 \cos^2 u \cdot \frac{du}{2}
\\
\\
\frac{1}{8} \int^{\pi}_0 \cos^2 2t dt =& \frac{1}{16} \int^{2 \pi}_0 \cos^2 u du
\qquad \text{Apply half-angle formula } \cos 2 u = 2 \cos^2 u - 1
\\
\\
\frac{1}{8} \int^{\pi}_0 \cos^2 2t dt =& \frac{1}{16} \int^{2 \pi}_0 \left(\frac{\cos 2 u + 1}{2} \right) du
\\
\\
\frac{1}{8} \int^{\pi}_0 \cos^2 2t dt =& \frac{1}{32} \int^{2 \pi}_0 (\cos 2u + 1) du
\end{aligned}
\end{equation}
$
Let $v = 2u$, then $dv = 2 du$, so $\displaystyle du = \frac{dv}{2}$. When $u = 0, v = 0$ and when $u = 2 \pi, v = 4 \pi$
$
\begin{equation}
\begin{aligned}
\frac{1}{32} \int^{32}_0 (\cos 2u + 1) du =& \frac{1}{32} \int^{4 \pi}_0 (\cos v + 1) \cdot \frac{dv}{2}
\\
\\
\frac{1}{32} \int^{32}_0 (\cos 2u + 1) du =& \frac{1}{64} \int^{4 \pi}_0 (\cos v + 1) dv
\\
\\
\frac{1}{32} \int^{32}_0 (\cos 2u + 1) du =& \frac{1 }{64} \left[ \sin v + v \right]^{4 \pi}_0
\\
\\
\frac{1}{32} \int^{32}_0 (\cos 2u + 1) du =& \frac{1}{64} (\sin 4 \pi + 4 \pi - \sin 0 - 0)
\\
\\
\frac{1}{32} \int^{32}_0 (\cos 2u + 1) du =& \frac{1}{64} (0 + 4 \pi - 0 - 0)
\\
\\
\frac{1}{32} \int^{32}_0 (\cos 2u + 1) du =& \frac{4 \pi}{64}
\\
\\
\frac{1}{32} \int^{32}_0 (\cos 2u + 1) du =& \frac{\pi}{16}
\end{aligned}
\end{equation}
$
@ 4th term
$
\begin{equation}
\begin{aligned}
\frac{1}{8} \int^{\pi}_0 \cos^3 2t dt =& \frac{1}{8} \int^{2 \pi}_0 \cos^3 u \cdot \frac{du}{2}
\\
\\
\frac{1}{8} \int^{\pi}_0 \cos^3 2t dt =& \frac{1}{16} \int^{2 \pi}_0 \cos^3 u du
\\
\\
\frac{1}{8} \int^{\pi}_0 \cos^3 2t dt =& \frac{1}{16} \int^{2 \pi}_0 (\cos^2 u)(\cos u) du
\qquad \text{Apply Trigonometric Identities } \cos^2 u + \sin^2 u = 1
\\
\\
\frac{1}{8} \int^{\pi}_0 \cos^3 2t dt =& \frac{1}{16} \int^{2 \pi}_0 (1 - \sin^2 u)(\cos u) du
\end{aligned}
\end{equation}
$
Let $v = \sin u$, then $dv = \cos u du$. When $u = 0, v = 0$ and when $u = 2 \pi, v = 0$. Therefore,
$
\begin{equation}
\begin{aligned}
\frac{1}{16} \int^{2 \pi}_0 (1 - \sin^2 u)(\cos u du) =& \frac{1}{16} \int^0_0 (1 - v^2) dv
\\
\\
\frac{1}{16} \int^{2 \pi}_0 (1 - \sin^2 u)(\cos u du) =& \frac{1}{16} \left[ v - \frac{v^3}{3} \right]^0_0
\\
\\
\frac{1}{16} \int^{2 \pi}_0 (1 - \sin^2 u)(\cos u du) =& \frac{1}{16} (0)
\\
\\
\frac{1}{16} \int^{2 \pi}_0 (1 - \sin^2 u)(\cos u du) =& 0
\end{aligned}
\end{equation}
$
Combine the results of integration term by term
$
\begin{equation}
\begin{aligned}
\int^{\pi}_0 \sin^2 t \cos^4 t dt =& \frac{\pi}{8} + 0 - \frac{\pi}{16} - 0
\\
\\
\int^{\pi}_0 \sin^2 t \cos^4 t dt =& \frac{2 \pi + 0 - \pi - 0}{16}
\\
\\
\int^{\pi}_0 \sin^2 t \cos^4 t dt =& \frac{\pi}{16}
\end{aligned}
\end{equation}
$
Sunday, September 30, 2018
Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 14
Subscribe to:
Post Comments (Atom)
Why is the fact that the Americans are helping the Russians important?
In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...
-
Lionel Wallace is the subject of most of "The Door in the Wall" by H.G. Wells. The narrator, Redmond, tells about Wallace's li...
-
In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...
-
Resourceful: Phileas Fogg doesn't let unexpected obstacles deter him. For example, when the railroad tracks all of a sudden end in India...
-
Friar Lawrence plays a significant role in Romeo and Juliet's fate and is responsible not only for secretly marrying the two lovers but ...
-
The poem contrasts the nighttime, imaginative world of a child with his daytime, prosaic world. In the first stanza, the child, on going to ...
-
Use transformation to illustrate the graph of the function $\displaystyle f(x) = \left\{ \begin{array}{c} -x & \rm{if} & x \\ e^...
-
Abraham and Moses are fundamental figures in both Judaism and Christianity. They each played an integral role in the development of these re...
No comments:
Post a Comment