Sunday, September 30, 2018

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 14

Determine the integral π0sin2tcos4tdt


π0sin2tcos4tdt=π0sin2t(cos2t)2dtApply half-angle formulas cos2t=12sin2t and cos2t=2cos2t1π0sin2tcos4tdt=π0(1cos2t2)(cos2t+12)2dtπ0sin2tcos4tdt=π0(1cos2t2)(cos22t+2cos2t+14)dtπ0sin2tcos4tdt=π0(cos22t+2cos2t+1cos32t2cos22tcos2t8)dt π0sin2tcos4tdt=18π0(1+cos2tcos22tcos32t)dtπ0sin2tcos4tdt=18π01dt+18π0cos2tdt18π0cos22tdt18π0cos32tdt


Let u=2t, then du=2dt, so dt=du2. When t=0,u=0 and when t=π,u=2π. We integrate the equation term by term

@ 1st term


18π01dt=182π01du218π01dt=1162π01du18π01dt=116[u]2π018π01dt=116(2π0)18π01dt=2π1618π01dt=π8


@ 2nd term


18π0cos2tdt=182π0cosudu218π0cos2tdt=1162π0cosudu18π0cos2tdt=116[sinu]2π018π0cos2tdt=116(sin2πsin0)18π0cos2tdt=116(0)18π0cos2tdt=0


@ 3rd term


18π0cos22tdt=182π0cos2udu218π0cos22tdt=1162π0cos2uduApply half-angle formula cos2u=2cos2u118π0cos22tdt=1162π0(cos2u+12)du18π0cos22tdt=1322π0(cos2u+1)du


Let v=2u, then dv=2du, so du=dv2. When u=0,v=0 and when u=2π,v=4π


132320(cos2u+1)du=1324π0(cosv+1)dv2132320(cos2u+1)du=1644π0(cosv+1)dv132320(cos2u+1)du=164[sinv+v]4π0132320(cos2u+1)du=164(sin4π+4πsin00)132320(cos2u+1)du=164(0+4π00)132320(cos2u+1)du=4π64132320(cos2u+1)du=π16


@ 4th term


18π0cos32tdt=182π0cos3udu218π0cos32tdt=1162π0cos3udu18π0cos32tdt=1162π0(cos2u)(cosu)duApply Trigonometric Identities cos2u+sin2u=118π0cos32tdt=1162π0(1sin2u)(cosu)du


Let v=sinu, then dv=cosudu. When u=0,v=0 and when u=2π,v=0. Therefore,


1162π0(1sin2u)(cosudu)=11600(1v2)dv1162π0(1sin2u)(cosudu)=116[vv33]001162π0(1sin2u)(cosudu)=116(0)1162π0(1sin2u)(cosudu)=0


Combine the results of integration term by term


π0sin2tcos4tdt=π8+0π160π0sin2tcos4tdt=2π+0π016π0sin2tcos4tdt=π16

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...