Determine the integral $\displaystyle \int^{\pi}_0 \sin^2 t \cos^4 t dt$
$
\begin{equation}
\begin{aligned}
\int^{\pi}_0 \sin^2 t \cos^4 t dt =& \int^{\pi}_0 \sin^2 t (\cos^2 t)^2 dt
\qquad \text{Apply half-angle formulas } \cos 2 t = 1 - 2 \sin^2 t \text{ and } \cos 2t = 2 \cos^2 t - 1
\\
\\
\int^{\pi}_0 \sin^2 t \cos^4 t dt =& \int^{\pi}_0 \left( \frac{1 - \cos 2 t}{2} \right)\left( \frac{\cos 2 t + 1}{2} \right)^2 dt
\\
\\
\int^{\pi}_0 \sin^2 t \cos^4 t dt =& \int^{\pi}_0 \left( \frac{1 - \cos 2t}{2}\right) \left( \frac{\cos^2 2 t + 2 \cos 2t + 1}{4} \right) dt
\\
\\
\int^{\pi}_0 \sin^2 t \cos^4 t dt =& \int^{\pi}_0 \left( \frac{\cos^2 2t + 2 \cos 2 t + 1 - \cos^3 2t - 2 \cos^2 2t - \cos 2 t }{8} \right) dt
\\
\
\int^{\pi}_0 \sin^2 t \cos^4 t dt =& \frac{1}{8} \int^{\pi}_0 (1 + \cos 2t - \cos^2 2t - \cos^3 2 t) dt
\\
\\
\int^{\pi}_0 \sin^2 t \cos^4 t dt =& \frac{1}{8} \int^{\pi}_0 1 dt + \frac{1}{8} \int^{\pi}_0 \cos 2t dt - \frac{1}{8} \int^{\pi}_0 \cos^2 2t dt - \frac{1}{8} \int^{\pi}_0 \cos^3 2t dt
\end{aligned}
\end{equation}
$
Let $u = 2t$, then $du = 2dt$, so $\displaystyle dt = \frac{du}{2}$. When $t = 0, u = 0$ and when $t = \pi, u = 2 \pi$. We integrate the equation term by term
@ 1st term
$
\begin{equation}
\begin{aligned}
\frac{1}{8} \int^{\pi}_0 1 dt =& \frac{1}{8} \int^{2 \pi}_0 1 \cdot \frac{du}{2}
\\
\\
\frac{1}{8} \int^{\pi}_0 1 dt =& \frac{1}{16} \int^{2 \pi}_0 1 du
\\
\\
\frac{1}{8} \int^{\pi}_0 1 dt =& \frac{1}{16} \left[ u \right]^{2 \pi}_0
\\
\\
\frac{1}{8} \int^{\pi}_0 1 dt =& \frac{1}{16} (2 \pi - 0)
\\
\\
\frac{1}{8} \int^{\pi}_0 1 dt =& \frac{2 \pi}{16}
\\
\\
\frac{1}{8} \int^{\pi}_0 1 dt =& \frac{\pi}{8}
\end{aligned}
\end{equation}
$
@ 2nd term
$
\begin{equation}
\begin{aligned}
\frac{1}{8} \int^{\pi}_0 \cos 2t dt =& \frac{1}{8} \int^{2 \pi}_0 \cos u \cdot \frac{du}{2}
\\
\\
\frac{1}{8} \int^{\pi}_0 \cos 2t dt =& \frac{1}{16} \int^{2 \pi}_0 \cos u du
\\
\\
\frac{1}{8} \int^{\pi}_0 \cos 2t dt =& \frac{1}{16} \left[ \sin u \right]^{2 \pi}_0
\\
\\
\frac{1}{8} \int^{\pi}_0 \cos 2t dt =& \frac{1}{16} (\sin 2 \pi - \sin 0)
\\
\\
\frac{1}{8} \int^{\pi}_0 \cos 2t dt =& \frac{1}{16} (0)
\\
\\
\frac{1}{8} \int^{\pi}_0 \cos 2t dt =& 0
\end{aligned}
\end{equation}
$
@ 3rd term
$
\begin{equation}
\begin{aligned}
\frac{1}{8} \int^{\pi}_0 \cos^2 2t dt =& \frac{1}{8} \int^{2 \pi}_0 \cos^2 u \cdot \frac{du}{2}
\\
\\
\frac{1}{8} \int^{\pi}_0 \cos^2 2t dt =& \frac{1}{16} \int^{2 \pi}_0 \cos^2 u du
\qquad \text{Apply half-angle formula } \cos 2 u = 2 \cos^2 u - 1
\\
\\
\frac{1}{8} \int^{\pi}_0 \cos^2 2t dt =& \frac{1}{16} \int^{2 \pi}_0 \left(\frac{\cos 2 u + 1}{2} \right) du
\\
\\
\frac{1}{8} \int^{\pi}_0 \cos^2 2t dt =& \frac{1}{32} \int^{2 \pi}_0 (\cos 2u + 1) du
\end{aligned}
\end{equation}
$
Let $v = 2u$, then $dv = 2 du$, so $\displaystyle du = \frac{dv}{2}$. When $u = 0, v = 0$ and when $u = 2 \pi, v = 4 \pi$
$
\begin{equation}
\begin{aligned}
\frac{1}{32} \int^{32}_0 (\cos 2u + 1) du =& \frac{1}{32} \int^{4 \pi}_0 (\cos v + 1) \cdot \frac{dv}{2}
\\
\\
\frac{1}{32} \int^{32}_0 (\cos 2u + 1) du =& \frac{1}{64} \int^{4 \pi}_0 (\cos v + 1) dv
\\
\\
\frac{1}{32} \int^{32}_0 (\cos 2u + 1) du =& \frac{1 }{64} \left[ \sin v + v \right]^{4 \pi}_0
\\
\\
\frac{1}{32} \int^{32}_0 (\cos 2u + 1) du =& \frac{1}{64} (\sin 4 \pi + 4 \pi - \sin 0 - 0)
\\
\\
\frac{1}{32} \int^{32}_0 (\cos 2u + 1) du =& \frac{1}{64} (0 + 4 \pi - 0 - 0)
\\
\\
\frac{1}{32} \int^{32}_0 (\cos 2u + 1) du =& \frac{4 \pi}{64}
\\
\\
\frac{1}{32} \int^{32}_0 (\cos 2u + 1) du =& \frac{\pi}{16}
\end{aligned}
\end{equation}
$
@ 4th term
$
\begin{equation}
\begin{aligned}
\frac{1}{8} \int^{\pi}_0 \cos^3 2t dt =& \frac{1}{8} \int^{2 \pi}_0 \cos^3 u \cdot \frac{du}{2}
\\
\\
\frac{1}{8} \int^{\pi}_0 \cos^3 2t dt =& \frac{1}{16} \int^{2 \pi}_0 \cos^3 u du
\\
\\
\frac{1}{8} \int^{\pi}_0 \cos^3 2t dt =& \frac{1}{16} \int^{2 \pi}_0 (\cos^2 u)(\cos u) du
\qquad \text{Apply Trigonometric Identities } \cos^2 u + \sin^2 u = 1
\\
\\
\frac{1}{8} \int^{\pi}_0 \cos^3 2t dt =& \frac{1}{16} \int^{2 \pi}_0 (1 - \sin^2 u)(\cos u) du
\end{aligned}
\end{equation}
$
Let $v = \sin u$, then $dv = \cos u du$. When $u = 0, v = 0$ and when $u = 2 \pi, v = 0$. Therefore,
$
\begin{equation}
\begin{aligned}
\frac{1}{16} \int^{2 \pi}_0 (1 - \sin^2 u)(\cos u du) =& \frac{1}{16} \int^0_0 (1 - v^2) dv
\\
\\
\frac{1}{16} \int^{2 \pi}_0 (1 - \sin^2 u)(\cos u du) =& \frac{1}{16} \left[ v - \frac{v^3}{3} \right]^0_0
\\
\\
\frac{1}{16} \int^{2 \pi}_0 (1 - \sin^2 u)(\cos u du) =& \frac{1}{16} (0)
\\
\\
\frac{1}{16} \int^{2 \pi}_0 (1 - \sin^2 u)(\cos u du) =& 0
\end{aligned}
\end{equation}
$
Combine the results of integration term by term
$
\begin{equation}
\begin{aligned}
\int^{\pi}_0 \sin^2 t \cos^4 t dt =& \frac{\pi}{8} + 0 - \frac{\pi}{16} - 0
\\
\\
\int^{\pi}_0 \sin^2 t \cos^4 t dt =& \frac{2 \pi + 0 - \pi - 0}{16}
\\
\\
\int^{\pi}_0 \sin^2 t \cos^4 t dt =& \frac{\pi}{16}
\end{aligned}
\end{equation}
$
Sunday, September 30, 2018
Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 14
Subscribe to:
Post Comments (Atom)
Why is the fact that the Americans are helping the Russians important?
In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...
-
There are a plethora of rules that Jonas and the other citizens must follow. Again, page numbers will vary given the edition of the book tha...
-
Lionel Wallace is the subject of most of "The Door in the Wall" by H.G. Wells. The narrator, Redmond, tells about Wallace's li...
-
In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...
-
The poem contrasts the nighttime, imaginative world of a child with his daytime, prosaic world. In the first stanza, the child, on going to ...
-
Robinson Crusoe, written by Daniel Defoe, is a novel. A novel is a genre defined as a long imaginative work of literature written in prose. ...
-
In Celie's tenth letter to God, she describes seeing her daughter in a store with a woman. She had not seen her daughter since the night...
-
Let's start with terms: "expected value" means the average amount that you would win or lose over a large number of plays. The...
No comments:
Post a Comment