Sunday, September 30, 2018

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 14

Determine the integral $\displaystyle \int^{\pi}_0 \sin^2 t \cos^4 t dt$


$
\begin{equation}
\begin{aligned}

\int^{\pi}_0 \sin^2 t \cos^4 t dt =& \int^{\pi}_0 \sin^2 t (\cos^2 t)^2 dt
\qquad \text{Apply half-angle formulas } \cos 2 t = 1 - 2 \sin^2 t \text{ and } \cos 2t = 2 \cos^2 t - 1
\\
\\
\int^{\pi}_0 \sin^2 t \cos^4 t dt =& \int^{\pi}_0 \left( \frac{1 - \cos 2 t}{2} \right)\left( \frac{\cos 2 t + 1}{2} \right)^2 dt
\\
\\
\int^{\pi}_0 \sin^2 t \cos^4 t dt =& \int^{\pi}_0 \left( \frac{1 - \cos 2t}{2}\right) \left( \frac{\cos^2 2 t + 2 \cos 2t + 1}{4} \right) dt
\\
\\
\int^{\pi}_0 \sin^2 t \cos^4 t dt =& \int^{\pi}_0 \left( \frac{\cos^2 2t + 2 \cos 2 t + 1 - \cos^3 2t - 2 \cos^2 2t - \cos 2 t }{8} \right) dt
\\
\
\int^{\pi}_0 \sin^2 t \cos^4 t dt =& \frac{1}{8} \int^{\pi}_0 (1 + \cos 2t - \cos^2 2t - \cos^3 2 t) dt
\\
\\
\int^{\pi}_0 \sin^2 t \cos^4 t dt =& \frac{1}{8} \int^{\pi}_0 1 dt + \frac{1}{8} \int^{\pi}_0 \cos 2t dt - \frac{1}{8} \int^{\pi}_0 \cos^2 2t dt - \frac{1}{8} \int^{\pi}_0 \cos^3 2t dt


\end{aligned}
\end{equation}
$


Let $u = 2t$, then $du = 2dt$, so $\displaystyle dt = \frac{du}{2}$. When $t = 0, u = 0$ and when $t = \pi, u = 2 \pi$. We integrate the equation term by term

@ 1st term


$
\begin{equation}
\begin{aligned}

\frac{1}{8} \int^{\pi}_0 1 dt =& \frac{1}{8} \int^{2 \pi}_0 1 \cdot \frac{du}{2}
\\
\\
\frac{1}{8} \int^{\pi}_0 1 dt =& \frac{1}{16} \int^{2 \pi}_0 1 du
\\
\\
\frac{1}{8} \int^{\pi}_0 1 dt =& \frac{1}{16} \left[ u \right]^{2 \pi}_0
\\
\\
\frac{1}{8} \int^{\pi}_0 1 dt =& \frac{1}{16} (2 \pi - 0)
\\
\\
\frac{1}{8} \int^{\pi}_0 1 dt =& \frac{2 \pi}{16}
\\
\\
\frac{1}{8} \int^{\pi}_0 1 dt =& \frac{\pi}{8}

\end{aligned}
\end{equation}
$


@ 2nd term


$
\begin{equation}
\begin{aligned}

\frac{1}{8} \int^{\pi}_0 \cos 2t dt =& \frac{1}{8} \int^{2 \pi}_0 \cos u \cdot \frac{du}{2}
\\
\\
\frac{1}{8} \int^{\pi}_0 \cos 2t dt =& \frac{1}{16} \int^{2 \pi}_0 \cos u du
\\
\\
\frac{1}{8} \int^{\pi}_0 \cos 2t dt =& \frac{1}{16} \left[ \sin u \right]^{2 \pi}_0
\\
\\
\frac{1}{8} \int^{\pi}_0 \cos 2t dt =& \frac{1}{16} (\sin 2 \pi - \sin 0)
\\
\\
\frac{1}{8} \int^{\pi}_0 \cos 2t dt =& \frac{1}{16} (0)
\\
\\
\frac{1}{8} \int^{\pi}_0 \cos 2t dt =& 0

\end{aligned}
\end{equation}
$


@ 3rd term


$
\begin{equation}
\begin{aligned}

\frac{1}{8} \int^{\pi}_0 \cos^2 2t dt =& \frac{1}{8} \int^{2 \pi}_0 \cos^2 u \cdot \frac{du}{2}
\\
\\
\frac{1}{8} \int^{\pi}_0 \cos^2 2t dt =& \frac{1}{16} \int^{2 \pi}_0 \cos^2 u du
\qquad \text{Apply half-angle formula } \cos 2 u = 2 \cos^2 u - 1
\\
\\
\frac{1}{8} \int^{\pi}_0 \cos^2 2t dt =& \frac{1}{16} \int^{2 \pi}_0 \left(\frac{\cos 2 u + 1}{2} \right) du
\\
\\
\frac{1}{8} \int^{\pi}_0 \cos^2 2t dt =& \frac{1}{32} \int^{2 \pi}_0 (\cos 2u + 1) du

\end{aligned}
\end{equation}
$


Let $v = 2u$, then $dv = 2 du$, so $\displaystyle du = \frac{dv}{2}$. When $u = 0, v = 0$ and when $u = 2 \pi, v = 4 \pi$


$
\begin{equation}
\begin{aligned}

\frac{1}{32} \int^{32}_0 (\cos 2u + 1) du =& \frac{1}{32} \int^{4 \pi}_0 (\cos v + 1) \cdot \frac{dv}{2}
\\
\\
\frac{1}{32} \int^{32}_0 (\cos 2u + 1) du =& \frac{1}{64} \int^{4 \pi}_0 (\cos v + 1) dv
\\
\\
\frac{1}{32} \int^{32}_0 (\cos 2u + 1) du =& \frac{1 }{64} \left[ \sin v + v \right]^{4 \pi}_0
\\
\\
\frac{1}{32} \int^{32}_0 (\cos 2u + 1) du =& \frac{1}{64} (\sin 4 \pi + 4 \pi - \sin 0 - 0)
\\
\\
\frac{1}{32} \int^{32}_0 (\cos 2u + 1) du =& \frac{1}{64} (0 + 4 \pi - 0 - 0)
\\
\\
\frac{1}{32} \int^{32}_0 (\cos 2u + 1) du =& \frac{4 \pi}{64}
\\
\\
\frac{1}{32} \int^{32}_0 (\cos 2u + 1) du =& \frac{\pi}{16}

\end{aligned}
\end{equation}
$


@ 4th term


$
\begin{equation}
\begin{aligned}

\frac{1}{8} \int^{\pi}_0 \cos^3 2t dt =& \frac{1}{8} \int^{2 \pi}_0 \cos^3 u \cdot \frac{du}{2}
\\
\\
\frac{1}{8} \int^{\pi}_0 \cos^3 2t dt =& \frac{1}{16} \int^{2 \pi}_0 \cos^3 u du
\\
\\
\frac{1}{8} \int^{\pi}_0 \cos^3 2t dt =& \frac{1}{16} \int^{2 \pi}_0 (\cos^2 u)(\cos u) du
\qquad \text{Apply Trigonometric Identities } \cos^2 u + \sin^2 u = 1
\\
\\
\frac{1}{8} \int^{\pi}_0 \cos^3 2t dt =& \frac{1}{16} \int^{2 \pi}_0 (1 - \sin^2 u)(\cos u) du

\end{aligned}
\end{equation}
$


Let $v = \sin u$, then $dv = \cos u du$. When $u = 0, v = 0$ and when $u = 2 \pi, v = 0$. Therefore,


$
\begin{equation}
\begin{aligned}

\frac{1}{16} \int^{2 \pi}_0 (1 - \sin^2 u)(\cos u du) =& \frac{1}{16} \int^0_0 (1 - v^2) dv
\\
\\
\frac{1}{16} \int^{2 \pi}_0 (1 - \sin^2 u)(\cos u du) =& \frac{1}{16} \left[ v - \frac{v^3}{3} \right]^0_0
\\
\\
\frac{1}{16} \int^{2 \pi}_0 (1 - \sin^2 u)(\cos u du) =& \frac{1}{16} (0)
\\
\\
\frac{1}{16} \int^{2 \pi}_0 (1 - \sin^2 u)(\cos u du) =& 0

\end{aligned}
\end{equation}
$


Combine the results of integration term by term


$
\begin{equation}
\begin{aligned}

\int^{\pi}_0 \sin^2 t \cos^4 t dt =& \frac{\pi}{8} + 0 - \frac{\pi}{16} - 0
\\
\\
\int^{\pi}_0 \sin^2 t \cos^4 t dt =& \frac{2 \pi + 0 - \pi - 0}{16}
\\
\\
\int^{\pi}_0 \sin^2 t \cos^4 t dt =& \frac{\pi}{16}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...