Monday, September 24, 2018

College Algebra, Chapter 3, 3.4, Section 3.4, Problem 18

A function $\displaystyle g(x) = \frac{2}{x + 1}$. Determine the average rate of change of the function between $x = 0$ and $x = h$.


$
\begin{equation}
\begin{aligned}

\text{average rate of change } =& \frac{g(b) - g(a)}{b - a}
&& \text{Model}
\\
\\
\text{average rate of change } =& \frac{g(h) - g(0)}{h - 0}
&& \text{Substitute } a = 0 \text{ and } b = h
\\
\\
\text{average rate of change } =& \frac{\displaystyle \frac{2}{h + 1} - \frac{2}{0 + 1} }{h}
&& \text{Simplify}
\\
\\
\text{average rate of change } =& \frac{\displaystyle \frac{2}{h + 1} - 2}{h}
&& \text{Get the LCD}
\\
\\
\text{average rate of change } =& \frac{2 - 2 (h + 1)}{h(h + 1)}
&& \text{Apply Distributive Property}
\\
\\
\text{average rate of change } =& \frac{2 - 2h - 2}{h (h + 1)}
&& \text{Combine like terms}
\\
\\
\text{average rate of change } =& \frac{-2 \cancel{h}}{\cancel{h} (h + 1)}
&& \text{Cancel out like terms}
\\
\\
\text{average rate of change } =& \frac{2}{(h + 1)}
&& \text{Answer}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...