Find $\displaystyle \lim\limits_{\theta \to 0^+} \frac{A(\theta)}{B(\theta)}$ for a semicircle with diameter $PQ$ that sits on a isosceles triangle $PQR$ to form a region shaped like a two dimensional ice cream cone, as shown in the figure. Where $A(\theta)$ is there area of the semicircle and $B(\theta)$ is the area of the triangle.
For the area of semicircle $A(\theta)$. We let $r$ be the radius forming this triangle
$
\begin{equation}
\begin{aligned}
\sin \frac{\theta}{2} &= \frac{r}{10}\\
\\
r &= 10 \sin \frac{\theta}{2}
\end{aligned}
\end{equation}
$
Solving for $A(\theta)$
$
\begin{equation}
\begin{aligned}
A(\theta) &= \frac{\pi r^2}{2} &&; \text{where } r = 10 \sin \frac{\theta}{2}\\
\\
A(\theta) &= \frac{\pi(10 \sin \frac{\theta}{2})^2}{2}\\
\\
A(\theta) &= 50 \pi \left( \sin^2 \left( \frac{\theta}{2}\right)\right)
\end{aligned}
\end{equation}
$
For the area of triangle $B(\theta)$ given two sides and an included angle we have,
$
\begin{equation}
\begin{aligned}
B(\theta) &= \frac{1}{2} ab \sin \theta\\
\\
B(\theta) &= \frac{1}{2} (10)(10) \sin \theta\\
\\
B(\theta) &= 50 \sin \theta
\end{aligned}
\end{equation}
$
Thus,
$
\begin{equation}
\begin{aligned}
\lim\limits_{\theta \to 0^+} \frac{A(\theta)}{B(\theta)} &= \lim\limits_{\theta \to 0^+} \frac{\cancel{50} \left( \sin \frac{\theta}{2}\right)^2}{\cancel{50}\sin \theta} && \text{We can introduce a factor } \frac{\theta}{\theta} \text{ and } \frac{\frac{\theta}{2}}{\frac{\theta}{2}} \text{ to use the property of limit.}\\
\\
\lim\limits_{\theta \to 0^+} \frac{A(\theta)}{B(\theta)} &= \lim\limits_{\theta \to 0^+} \frac{\pi \left( \sin \frac{\pi}{2}\right)^2}{\sin \theta} \left( \frac{\theta}{\cancel{\theta}} \right) \left( \frac{\frac{\cancel{\theta}}{2}}{\frac{\theta}{2}}\right)\\
\\
\lim\limits_{\theta \to 0^+} \frac{A(\theta)}{B(\theta)} &= \lim\limits_{\theta \to 0^+} \frac{\pi}{2} \left[ \left( \frac{\theta}{\sin \theta} \right) \left( \frac{\sin \frac{\theta}{2}}{\frac{\theta}{2}}\right) \left( \sin \frac{\theta}{2}\right)\right] && \text{recall that } \lim\limits_{\theta \to 0 } \frac{\sin \theta}{\theta} =1\\
\\
\lim\limits_{\theta \to 0^+} \frac{A(\theta)}{B(\theta)} &= \lim\limits_{\theta \to 0^+} \frac{\pi}{2} (1) (1) \left( \sin \frac{\theta}{2}\right)\\
\\
\lim\limits_{\theta \to 0^+} \frac{A(\theta)}{B(\theta)} &= \frac{\pi}{2} \left( \sin \frac{\theta}{2}\right)\\
\\
\lim\limits_{\theta \to 0^+} \frac{A(\theta)}{B(\theta)} &= \frac{\pi}{2} \sin \frac{0}{2}\\
\\
\lim\limits_{\theta \to 0^+} \frac{A(\theta)}{B(\theta)} &= 0
\end{aligned}
\end{equation}
$
Wednesday, September 26, 2018
Single Variable Calculus, Chapter 3, 3.4, Section 3.4, Problem 50
Subscribe to:
Post Comments (Atom)
Why is the fact that the Americans are helping the Russians important?
In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...
-
Lionel Wallace is the subject of most of "The Door in the Wall" by H.G. Wells. The narrator, Redmond, tells about Wallace's li...
-
In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...
-
Resourceful: Phileas Fogg doesn't let unexpected obstacles deter him. For example, when the railroad tracks all of a sudden end in India...
-
Friar Lawrence plays a significant role in Romeo and Juliet's fate and is responsible not only for secretly marrying the two lovers but ...
-
The poem contrasts the nighttime, imaginative world of a child with his daytime, prosaic world. In the first stanza, the child, on going to ...
-
Use transformation to illustrate the graph of the function $\displaystyle f(x) = \left\{ \begin{array}{c} -x & \rm{if} & x \\ e^...
-
Abraham and Moses are fundamental figures in both Judaism and Christianity. They each played an integral role in the development of these re...
No comments:
Post a Comment