Wednesday, September 26, 2018

Single Variable Calculus, Chapter 3, 3.4, Section 3.4, Problem 50

Find $\displaystyle \lim\limits_{\theta \to 0^+} \frac{A(\theta)}{B(\theta)}$ for a semicircle with diameter $PQ$ that sits on a isosceles triangle $PQR$ to form a region shaped like a two dimensional ice cream cone, as shown in the figure. Where $A(\theta)$ is there area of the semicircle and $B(\theta)$ is the area of the triangle.




For the area of semicircle $A(\theta)$. We let $r$ be the radius forming this triangle





$
\begin{equation}
\begin{aligned}
\sin \frac{\theta}{2} &= \frac{r}{10}\\
\\
r &= 10 \sin \frac{\theta}{2}
\end{aligned}
\end{equation}
$

Solving for $A(\theta)$

$
\begin{equation}
\begin{aligned}
A(\theta) &= \frac{\pi r^2}{2} &&; \text{where } r = 10 \sin \frac{\theta}{2}\\
\\
A(\theta) &= \frac{\pi(10 \sin \frac{\theta}{2})^2}{2}\\
\\
A(\theta) &= 50 \pi \left( \sin^2 \left( \frac{\theta}{2}\right)\right)

\end{aligned}
\end{equation}
$


For the area of triangle $B(\theta)$ given two sides and an included angle we have,

$
\begin{equation}
\begin{aligned}
B(\theta) &= \frac{1}{2} ab \sin \theta\\
\\
B(\theta) &= \frac{1}{2} (10)(10) \sin \theta\\
\\
B(\theta) &= 50 \sin \theta
\end{aligned}
\end{equation}
$


Thus,

$
\begin{equation}
\begin{aligned}
\lim\limits_{\theta \to 0^+} \frac{A(\theta)}{B(\theta)} &= \lim\limits_{\theta \to 0^+} \frac{\cancel{50} \left( \sin \frac{\theta}{2}\right)^2}{\cancel{50}\sin \theta} && \text{We can introduce a factor } \frac{\theta}{\theta} \text{ and } \frac{\frac{\theta}{2}}{\frac{\theta}{2}} \text{ to use the property of limit.}\\
\\
\lim\limits_{\theta \to 0^+} \frac{A(\theta)}{B(\theta)} &= \lim\limits_{\theta \to 0^+} \frac{\pi \left( \sin \frac{\pi}{2}\right)^2}{\sin \theta} \left( \frac{\theta}{\cancel{\theta}} \right) \left( \frac{\frac{\cancel{\theta}}{2}}{\frac{\theta}{2}}\right)\\
\\
\lim\limits_{\theta \to 0^+} \frac{A(\theta)}{B(\theta)} &= \lim\limits_{\theta \to 0^+} \frac{\pi}{2} \left[ \left( \frac{\theta}{\sin \theta} \right) \left( \frac{\sin \frac{\theta}{2}}{\frac{\theta}{2}}\right) \left( \sin \frac{\theta}{2}\right)\right] && \text{recall that } \lim\limits_{\theta \to 0 } \frac{\sin \theta}{\theta} =1\\
\\
\lim\limits_{\theta \to 0^+} \frac{A(\theta)}{B(\theta)} &= \lim\limits_{\theta \to 0^+} \frac{\pi}{2} (1) (1) \left( \sin \frac{\theta}{2}\right)\\
\\
\lim\limits_{\theta \to 0^+} \frac{A(\theta)}{B(\theta)} &= \frac{\pi}{2} \left( \sin \frac{\theta}{2}\right)\\
\\
\lim\limits_{\theta \to 0^+} \frac{A(\theta)}{B(\theta)} &= \frac{\pi}{2} \sin \frac{0}{2}\\
\\
\lim\limits_{\theta \to 0^+} \frac{A(\theta)}{B(\theta)} &= 0

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...