Friday, September 28, 2018

College Algebra, Chapter 4, 4.5, Section 4.5, Problem 56

Determine all the zeros of the polynomial $P(x) = x^5 + x^3 + 8x^2 + 8 $.
To find the zeros, we set $x^5 + x^3 + 8x^2 + 8 = 0$. Then,

$
\begin{equation}
\begin{aligned}
(x^5 + x^3) + (8x^2 + 8) &= 0 && \text{Group terms}\\
\\
x^3(x^2+1)+8(x^2+1) &= 0 && \text{Factor out $x^3$ and $8$}\\
\\
(x^2+1)(x^3+8) &= 0 && \text{Factor out } x^2 + 1
\end{aligned}
\end{equation}
$

If $(x^2 + 1) = 0$, then $x = \pm i$. To solve the remaining zeros of $P$, we use synthetic division to simplify $(x^3+8) = 0$. So by trial and error,
Again, by using synthetic division



Thus,

$
\begin{equation}
\begin{aligned}
P(x) &= x^5 + x^3 + 8x^2 + 8 \\
\\
&= (x^2+1)(x^3+8)\\
\\
&= (x^2+1)(x+2)(x^2-2x+4)
\end{aligned}
\end{equation}
$


Then, by using quadratic formula...

$
\begin{equation}
\begin{aligned}
x &= \frac{-(-2)\pm \sqrt{(-2)^2 - 4(1)(4)}}{2(1)}\\
\\
&= \frac{2 \pm \sqrt{-12}}{2} = 1 \pm \sqrt{3}i
\end{aligned}
\end{equation}
$

Thus, the zeros of $P$ are $-2, i, -i, 1 + \sqrt{3}i$ and $1-\sqrt{3}i$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...