Tuesday, September 18, 2018

Calculus of a Single Variable, Chapter 9, 9.7, Section 9.7, Problem 13

Maclaurin series is a special case of Taylor series that is centered at a=0. The expansion of the function about 0 follows the formula:
f(x)=sum_(n=0)^oo (f^n(0))/(n!) x^n
or
f(x)= f(0)+(f'(0)x)/(1!)+(f^2(0))/(2!)x^2+(f^3(0))/(3!)x^3+(f^4(0))/(4!)x^4 +...
To determine the 4th Maclaurin polynomial from the given function f(x)=e^(4x) ,
we may apply derivative formula for exponential function: d/(dx) e^u = e^u * (du)/(dx)
Let u =4x then (du)/(dx)= 4
Applying the values on the derivative formula for exponential function, we get:
d/(dx) e^(4x) = e^(4x) *4
Applying d/(dx) e^(4x)= 4e^(4x) for each f^n(x) , we get:
f'(x) = d/(dx) e^(4x)
=e^(4x) * 4
= 4e^(4x)
f^2(x) = 4 *d/(dx) e^(4x)
= 4*4e^(4x)
=16e^(4x)
f^3(x) = 16*d/(dx) e^(4x)
= 16*4e^(4x)
=64e^(4x)
f^4(x) = 64*d/(dx) e^(4x)
= 64*4e^(4x)
=256e^(4x)
Plug-in x=0 , we get:
f(0) =e^(4*0) =1
f'(0) =4e^(4*0)=4
f^2(0) =16e^(4*0)=16
f^3(0) =64e^(4*0)=64
f^4(0) =2564e^(4*0)=256
Note: e^(4*0)=e^0 =1 .
Plug-in the values on the formula for Maclaurin series.
f(x)=sum_(n=0)^4 (f^n(0))/(n!) x^n
= 1+4/(1!)x+16x^2+64x^3+256/(4!)x^4
=1+ 4/1x +16/(1*2)x^2 + 64/(1*2*3)x^3 +256/(1*2*3*4)x^4
=1+ 4/1x +16/2x^2 + 64/6x^3 +256/24x^4
= 1+4x+ 8x^2 + 32/3x^3 + 32/3x^4
The 4th Maclaurin polynomial for the given function f(x)= e^(4x) will be:
e^(4x) =1+4x+ 8x^2 + 32/3x^3 + 32/3x^4
or P_4(x) =1+4x+ 8x^2 + 32/3x^3 + 32/3x^4

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...