Solving indefinite integral by u-substitution, we follow:
int f(g(x))*g'(x) = int f(u) *du where we let u = g(x) .
By following the instruction to let "u" be the denominator of the integral,
it means we let: u = root(3)(x) -1
Find the derivative of "u" which is du = 1/(3x^(2/3))dx
Then du =1/(3x^(2/3))dx can be rearrange into 3x^(2/3)du =dx .
Applying u-substitution using u =root(3)(x)-1 and 3x^(2/3)du =dx .
int root(3)(x)/(root(3)(x)-1) dx = int root(3)(x)/u*3x^(2/3)du
= int (x^(1/3)*3x^(2/3))/udu
=int (3x^(1/3+2/3))/udu
=3 int x/udu
Note: x^(1/3+2/3) = x^(3/3)
=x^1 or x
Algebraic techniques:
From u = root(3)(x)-1 , we can rearrange it into root(3)(x)=u+1 .
Raising both sides by a power 3:
(root(3)(x))^3 =(u+1)^3
x = (u+1)*(u+1)*(u+1)
By FOIL: (u+1)*(u+1) = u*u +u*1+1*u+1*1
= u^2+u+u+1
= u^2+2u+1
Then let (u+1)(u+1) = u^2 +2u +1 in (u+1)(u+1)(u+1) :
(u+1)(u+1)(u+1) = (u+1)*(u^2+2u+1)
Applying distributive property:
(u+1)(u^2+2u+1) = u *(u^2+2u+1) + 1*(u^2+2u+1)
= u^3 +2u^2+u +u^2+2u+1
=u^3+3u^2+3u+1
then x = (u+1)*(u+1)*(u+1) is the same as
x =u^3+3u^2+3u+1
Substitute x=u^3+3u^2+3u+1 in 3 int x/udu :
3 int x/udu = 3 int (u^3+3u^2+3u+1 )/u du
= 3int (u^3/u+(3u^2)/u+(3u)/u+1/u) du
=3int (u^2+3u+3+1/u) du
Evaluating each term in separate integral:
3 * [ int u^2 *du+ int 3u*du+int 3*du+ int 1/u du]
where:
int u^2 *du = u^3/3
int 3u*du =(3u^2)/2
int 3*du = 3u
int 1/u du= ln|u|
3 * [ int u^2 *du+ int 3u*du+int 3*du+ int 1/u du] becomes:
3*[u^3/3 +(3u^2)/2 +3u+ln|u|] +C= 3u^3/3 +(9u^2)/2 +9u+3ln|u|+C
Substitute u = root(3)(x)-1:
3u^3/3 +(9u^2)/2 +9u+3ln|u| +C = (root(3)(x)-1)^3 +(9(root(3)(x)-1)^2)/2 +9(root(3)(x)-1)+3ln|(root(3)(x)-1)| +C
Thursday, September 27, 2018
int root(3)(x)/(root(3)(x) - 1) dx Find the indefinite integral by u substitution. (let u be the denominator of the integral)
Subscribe to:
Post Comments (Atom)
Why is the fact that the Americans are helping the Russians important?
In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...
-
There are a plethora of rules that Jonas and the other citizens must follow. Again, page numbers will vary given the edition of the book tha...
-
The poem contrasts the nighttime, imaginative world of a child with his daytime, prosaic world. In the first stanza, the child, on going to ...
-
The given two points of the exponential function are (2,24) and (3,144). To determine the exponential function y=ab^x plug-in the given x an...
-
The play Duchess of Malfi is named after the character and real life historical tragic figure of Duchess of Malfi who was the regent of the ...
-
The only example of simile in "The Lottery"—and a particularly weak one at that—is when Mrs. Hutchinson taps Mrs. Delacroix on the...
-
Hello! This expression is already a sum of two numbers, sin(32) and sin(54). Probably you want or express it as a product, or as an expressi...
-
Macbeth is reflecting on the Weird Sisters' prophecy and its astonishing accuracy. The witches were totally correct in predicting that M...
No comments:
Post a Comment