Saturday, September 29, 2018

Single Variable Calculus, Chapter 3, 3.2, Section 3.2, Problem 44

Find $f'(x)$ and $f''(x)$ on the function $f(x) = \displaystyle \frac{1}{x}$ using the definition of a derivative. Then graph $f, f'$ and $f''$ on a common screen and check to see if your answers are reasonable.

Using the definition of derivative

Using the definition of derivative


$
\begin{equation}
\begin{aligned}

\qquad f'(x) =& \lim_{h \to 0} \frac{f(x + h) = f(x)}{h}
&&
\\
\\
\qquad f'(x) =& \lim_{h \to 0} \frac{\displaystyle \frac{1}{x + h} - \frac{1}{x}}{h}
&& \text{Substitute $f(x + h)$ and $f(x)$}
\\
\\
\qquad f'(x) =& \lim_{h \to 0} \frac{x - (x + h)}{(h)(x) (x + h)}
&& \text{Get the LCD on the numerator and simplify}
\\
\\
\qquad f'(x) =& \lim_{h \to 0} \frac{\cancel{x} - \cancel{x} - h}{(h)(x)(x + h)}
&& \text{Combine like terms}
\\
\\
\qquad f'(x) =& \lim_{h \to 0} \frac{-\cancel{h}}{\cancel{(h)} (x)(x + h)}
&& \text{Cancel out like terms}
\\
\\
f'(x) =& \lim_{h \to 0} \left[ \frac{-1}{(x)(x + h)} \right] = \frac{-1}{(x)(x + 0)} = \frac{-1}{(x)(x)}
&& \text{Evaluate the limit}
\\
\\
f'(x) =& \frac{-1}{x^2}
&&

\end{aligned}
\end{equation}
$


Using the 2nd derivative of the definition


$
\begin{equation}
\begin{aligned}

\qquad f''(x) =& \lim_{h \to 0} \frac{f'(x + h) = f'(x)}{h}
&&
\\
\\
\qquad f''(x) =& \lim_{h \to 0} \frac{\displaystyle \frac{-1}{(x + h)^2} - \left( \frac{-1}{x^2} \right)}{h}
&& \text{Substitute } f'(x + h) \text{ and } f'(x)
\\
\\
\qquad f''(x) =& \lim_{h \to 0} \frac{-x^2 + (x + h)^2}{(h)(x^2)(x + h)^2}
&& \text{Get the LCD on the numerator and simplify}
\\
\\
\qquad f''(x) =& \lim_{h \to 0} \frac{-x^2 + x^2 + 2xh + h^2}{(h)(x^2)(x + h)^2}
&& \text{Expand the equation}
\\
\\
\qquad f''(x) =& \lim_{h \to 0} \frac{\cancel{-x^2} + \cancel{x^2} + 2xh + h^2}{(h)(x^2)(x + h)^2}
&& \text{Combine like terms}
\\
\\
\qquad f''(x) =& \lim_{h \to 0} \frac{2xh + h^2}{(h)(x^2)(x + h)^2}
&& \text{Factor the numerator}
\\
\\
\qquad f''(x) =& \lim_{h \to 0} \frac{\cancel{h}(2x + h)}{\cancel{(h)}(x^2)(x + h)^2}
&& \text{Cancel out like terms}
\\
\\
\qquad f''(x) =& \lim_{h \to 0} \left[ \frac{2x + h}{(x^2)(x + h)^2} \right] = \frac{2x + 0}{(x^2)(x + 0)^2} = \frac{2x}{(x^2)(x^2)}
&& \text{Evaluate the limit}
\\
\\
\qquad f''(x) =& \frac{2x}{x^4}

\end{aligned}
\end{equation}
$


Graph $f, f'$ and $f''$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...