Saturday, September 29, 2018

Single Variable Calculus, Chapter 3, 3.2, Section 3.2, Problem 44

Find f(x) and f(x) on the function f(x)=1x using the definition of a derivative. Then graph f,f and f on a common screen and check to see if your answers are reasonable.

Using the definition of derivative

Using the definition of derivative


f(x)=limh0f(x+h)=f(x)hf(x)=limh01x+h1xhSubstitute f(x+h) and f(x)f(x)=limh0x(x+h)(h)(x)(x+h)Get the LCD on the numerator and simplifyf(x)=limh0\cancelx\cancelxh(h)(x)(x+h)Combine like termsf(x)=limh0\cancelh\cancel(h)(x)(x+h)Cancel out like termsf(x)=limh0[1(x)(x+h)]=1(x)(x+0)=1(x)(x)Evaluate the limitf(x)=1x2


Using the 2nd derivative of the definition


f(x)=limh0f(x+h)=f(x)hf(x)=limh01(x+h)2(1x2)hSubstitute f(x+h) and f(x)f(x)=limh0x2+(x+h)2(h)(x2)(x+h)2Get the LCD on the numerator and simplifyf(x)=limh0x2+x2+2xh+h2(h)(x2)(x+h)2Expand the equationf(x)=limh0\cancelx2+\cancelx2+2xh+h2(h)(x2)(x+h)2Combine like termsf(x)=limh02xh+h2(h)(x2)(x+h)2Factor the numeratorf(x)=limh0\cancelh(2x+h)\cancel(h)(x2)(x+h)2Cancel out like termsf(x)=limh0[2x+h(x2)(x+h)2]=2x+0(x2)(x+0)2=2x(x2)(x2)Evaluate the limitf(x)=2xx4


Graph f,f and f

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...