Friday, September 21, 2018

Calculus of a Single Variable, Chapter 6, 6.3, Section 6.3, Problem 10

The general solution of a differential equation in a form of f(y) y'=f(x) can
be evaluated using direct integration.
We can denote y' as (dy)/(dx) then,
f(y) y'=f(x)
f(y) (dy)/(dx)=f(x)
Rearrange into : f(y) (dy)=f(x) dx
To be able to apply direct integration : intf(y) (dy)=int f(x) dx.
Applying this to the given problem: yy'=-8cos(pix) , we get:
y(dy)/(dx)=-8cos(pix)
y(dy)=-8cos(pix)dx
int y(dy)=int-8cos(pix)dx
For the integration on the left side, we apply Power Rule integration: int u^n du= u^(n+1)/(n+1) on int y dy .
int y dy = y^(1+1)/(1+1)
= y^2/2
For the integration on the right side, we apply the basic integration property: int c*f(x)dx= c int f(x) dx and basic integration formula for cosine function: int cos(u) du = sin(u) +C
int -8 cos(pix) dx= -8 int cos(pix) dx
Let u = pix then du = pi dx or (du)/pi=dx.
Then the integral becomes:
-8 int cos(pix) dx=-8 int cos(u) *(du)/pi
=-8/pi int cos(u) du
=-8/pi*sin(u) +C
Plug-in u=pix in -8/pi*sin(u) +C , we get:
-8 int cos(pix) dx=-8/pi*sin(pix) +C

Combing the results, we get the general solution for differential equation (yy'=-8cos(pix)) as:
y^2/2=-8/pi*sin(pix) +C
2* [y^2/2] = 2*[-8/pi*sin(pix)]+C
y^2 =-16/pi*sin(pix)+C
The general solution: y ^2=-16/pisin(pix)+C can be expressed as:
y = +-sqrt(-16/pisin(pix)+C) .

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...