Given ,
int sqrt(1-x^2)/x^4 dx
By applying Integration by parts we can solve the given integral
so,
let u= sqrt(1-x^2) ,v' = (1/x^4)
=> u' = (sqrt(1-x^2) )'
=> =d/dx (sqrt(1-x^2))
let t=1-x^2
so,
d/dx (sqrt(1-x^2))
=d/dx (sqrt(t))
= d/(dt) sqrt(t) * d/dx (t) [as d/dx f(t) = d/(dt) f(t) (dt)/dx ]
= [(1/2)t^((1/2)-1) ]*(d/dx (1-x^2))
= [(1/2)t^(-1/2)]*(-2x)
=[1/(2sqrt(1-x^2 ))]*(-2x)
=-x/sqrt(1-x^2)
so, u' = -x/sqrt(1-x^2) and as v'=(1/x^4) so
v = int 1/x^4 dx
= int x^(-4) dx
= (x^(-4+1))/(-4+1)
=(x^(-3))/(-3)
= -(1/(3x^3))
so , let us see the values altogether.
u= sqrt(1-x^2) ,u' = -x/sqrt(1-x^2) and v' = (1/x^4) ,v=-(1/(3x^3))
Now ,by applying the integration by parts int uv' is given as
int uv' = uv - int u'v
then,
int sqrt(1-x^2)/x^4 dx
= (sqrt(1-x^2)) (-(1/(3x^3))) - int (-x/sqrt(1-x^2))(-(1/(3x^3))) dx
= (sqrt(1-x^2)) (-(1/(3x^3))) -(- int (-x/sqrt(1-x^2))((1/(3x^3))) dx)
= (sqrt(1-x^2)) (-(1/(3x^3))) - int (x/sqrt(1-x^2))((1/(3x^3))) dx
= -(sqrt(1-x^2)) ((1/(3x^3))) - int (x/sqrt(1-x^2))((1/(3x^3))) dx-----(1)
Now let us solve ,
int (x/sqrt(1-x^2))((1/(3x^3))) dx
=int (1/sqrt(1-x^2))((1/(3x^2))) dx
=(1/3)int (1/sqrt(1-x^2))((1/(x^2))) dx
=(1/3)int (1/((x^2)sqrt(1-x^2))) dx
This integral can be solve by using the Trigonometric substitution(Trig substitution)
when the integrals containing sqrt(a-bx^2)then we have to take x=sqrt(a/b) sin(t)to solve the integral easily
so here , For
(1/3)int (1/((x^2)sqrt(1-x^2))) dx------(2)
x is given as
x= sqrt(1/1) sin(t) = sin(t)
as x= sin(t)
=> dx= cos(t) dt
now substituting the value of x in (2) we get
(1/3)int (1/((x^2)sqrt(1-x^2))) dx
=(1/3)int (1/(((sin(t))^2)sqrt(1-(sin(t))^2))) (cos(t) dt)
= (1/3)int (1/(((sin(t))^2)sqrt(cos(t))^2))) (cos(t) dt)
=(1/3)int (1/(((sin(t))^2)*(cos(t)))) (cos(t) dt)
=(1/3)int 1/(((sin(t))^2)) dt
=(1/3)int (csc(t))^2 dt
= (-1/3) cot(t) +c
= (-1/3) cot(arcsin(x)) +c ---(3)
[since x= sin(t) => t= arcsin(x)]
Now substituting (3) in (1) we get
(1) =>
-(sqrt(1-x^2)) ((1/(3x^3))) - int (x/sqrt(1-x^2))((1/(3x^3))) dx
=-(sqrt(1-x^2)) ((1/(3x^3))) - ((-1/3) cot(arcsin(x)) +c)
=-(sqrt(1-x^2)) ((1/(3x^3)))+(1/3) cot(arcsin(x)) +c
=(1/3) cot(arcsin(x))- (((sqrt(1-x^2))/(3x^3))) +c----(4)
cot(t) in terms of sin(t) can be given as follows
cot(t) = cos(t)/sin(t) = sqrt(1-(sin(t))^2)/sin(t)
so,
cot(arcsin(x)) = sqrt(1-(sin(arcsin(x)))^2)/sin(arcsin(x)) = sqrt(1-x^2)/x
substituting the above in (4) we get
(1/3) cot(arcsin(x))- (((sqrt(1-x^2))/(3x^3))) +c
=(1/3) (sqrt(1-x^2)/x)- (((sqrt(1-x^2))/(3x^3))) +c
=(sqrt(1-x^2)/(3x))- (((sqrt(1-x^2))/(3x^3))) +c
so,
int sqrt(1-x^2)/x^4 dx
=(sqrt(1-x^2)/(3x))- sqrt(1-x^2)/(3x^3)+c
Saturday, September 29, 2018
Calculus of a Single Variable, Chapter 8, 8.4, Section 8.4, Problem 25
Subscribe to:
Post Comments (Atom)
Why is the fact that the Americans are helping the Russians important?
In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...
-
Lionel Wallace is the subject of most of "The Door in the Wall" by H.G. Wells. The narrator, Redmond, tells about Wallace's li...
-
In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...
-
Resourceful: Phileas Fogg doesn't let unexpected obstacles deter him. For example, when the railroad tracks all of a sudden end in India...
-
Friar Lawrence plays a significant role in Romeo and Juliet's fate and is responsible not only for secretly marrying the two lovers but ...
-
The poem contrasts the nighttime, imaginative world of a child with his daytime, prosaic world. In the first stanza, the child, on going to ...
-
Use transformation to illustrate the graph of the function $\displaystyle f(x) = \left\{ \begin{array}{c} -x & \rm{if} & x \\ e^...
-
Abraham and Moses are fundamental figures in both Judaism and Christianity. They each played an integral role in the development of these re...
No comments:
Post a Comment