Given ,
int sqrt(1-x^2)/x^4 dx
By applying Integration by parts we can solve the given integral
so,
let u= sqrt(1-x^2) ,v' = (1/x^4)
=> u' = (sqrt(1-x^2) )'
=> =d/dx (sqrt(1-x^2))
let t=1-x^2
so,
d/dx (sqrt(1-x^2))
=d/dx (sqrt(t))
= d/(dt) sqrt(t) * d/dx (t) [as d/dx f(t) = d/(dt) f(t) (dt)/dx ]
= [(1/2)t^((1/2)-1) ]*(d/dx (1-x^2))
= [(1/2)t^(-1/2)]*(-2x)
=[1/(2sqrt(1-x^2 ))]*(-2x)
=-x/sqrt(1-x^2)
so, u' = -x/sqrt(1-x^2) and as v'=(1/x^4) so
v = int 1/x^4 dx
= int x^(-4) dx
= (x^(-4+1))/(-4+1)
=(x^(-3))/(-3)
= -(1/(3x^3))
so , let us see the values altogether.
u= sqrt(1-x^2) ,u' = -x/sqrt(1-x^2) and v' = (1/x^4) ,v=-(1/(3x^3))
Now ,by applying the integration by parts int uv' is given as
int uv' = uv - int u'v
then,
int sqrt(1-x^2)/x^4 dx
= (sqrt(1-x^2)) (-(1/(3x^3))) - int (-x/sqrt(1-x^2))(-(1/(3x^3))) dx
= (sqrt(1-x^2)) (-(1/(3x^3))) -(- int (-x/sqrt(1-x^2))((1/(3x^3))) dx)
= (sqrt(1-x^2)) (-(1/(3x^3))) - int (x/sqrt(1-x^2))((1/(3x^3))) dx
= -(sqrt(1-x^2)) ((1/(3x^3))) - int (x/sqrt(1-x^2))((1/(3x^3))) dx-----(1)
Now let us solve ,
int (x/sqrt(1-x^2))((1/(3x^3))) dx
=int (1/sqrt(1-x^2))((1/(3x^2))) dx
=(1/3)int (1/sqrt(1-x^2))((1/(x^2))) dx
=(1/3)int (1/((x^2)sqrt(1-x^2))) dx
This integral can be solve by using the Trigonometric substitution(Trig substitution)
when the integrals containing sqrt(a-bx^2)then we have to take x=sqrt(a/b) sin(t)to solve the integral easily
so here , For
(1/3)int (1/((x^2)sqrt(1-x^2))) dx------(2)
x is given as
x= sqrt(1/1) sin(t) = sin(t)
as x= sin(t)
=> dx= cos(t) dt
now substituting the value of x in (2) we get
(1/3)int (1/((x^2)sqrt(1-x^2))) dx
=(1/3)int (1/(((sin(t))^2)sqrt(1-(sin(t))^2))) (cos(t) dt)
= (1/3)int (1/(((sin(t))^2)sqrt(cos(t))^2))) (cos(t) dt)
=(1/3)int (1/(((sin(t))^2)*(cos(t)))) (cos(t) dt)
=(1/3)int 1/(((sin(t))^2)) dt
=(1/3)int (csc(t))^2 dt
= (-1/3) cot(t) +c
= (-1/3) cot(arcsin(x)) +c ---(3)
[since x= sin(t) => t= arcsin(x)]
Now substituting (3) in (1) we get
(1) =>
-(sqrt(1-x^2)) ((1/(3x^3))) - int (x/sqrt(1-x^2))((1/(3x^3))) dx
=-(sqrt(1-x^2)) ((1/(3x^3))) - ((-1/3) cot(arcsin(x)) +c)
=-(sqrt(1-x^2)) ((1/(3x^3)))+(1/3) cot(arcsin(x)) +c
=(1/3) cot(arcsin(x))- (((sqrt(1-x^2))/(3x^3))) +c----(4)
cot(t) in terms of sin(t) can be given as follows
cot(t) = cos(t)/sin(t) = sqrt(1-(sin(t))^2)/sin(t)
so,
cot(arcsin(x)) = sqrt(1-(sin(arcsin(x)))^2)/sin(arcsin(x)) = sqrt(1-x^2)/x
substituting the above in (4) we get
(1/3) cot(arcsin(x))- (((sqrt(1-x^2))/(3x^3))) +c
=(1/3) (sqrt(1-x^2)/x)- (((sqrt(1-x^2))/(3x^3))) +c
=(sqrt(1-x^2)/(3x))- (((sqrt(1-x^2))/(3x^3))) +c
so,
int sqrt(1-x^2)/x^4 dx
=(sqrt(1-x^2)/(3x))- sqrt(1-x^2)/(3x^3)+c
Saturday, September 29, 2018
Calculus of a Single Variable, Chapter 8, 8.4, Section 8.4, Problem 25
Subscribe to:
Post Comments (Atom)
Why is the fact that the Americans are helping the Russians important?
In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...
-
There are a plethora of rules that Jonas and the other citizens must follow. Again, page numbers will vary given the edition of the book tha...
-
The poem contrasts the nighttime, imaginative world of a child with his daytime, prosaic world. In the first stanza, the child, on going to ...
-
The given two points of the exponential function are (2,24) and (3,144). To determine the exponential function y=ab^x plug-in the given x an...
-
The only example of simile in "The Lottery"—and a particularly weak one at that—is when Mrs. Hutchinson taps Mrs. Delacroix on the...
-
Hello! This expression is already a sum of two numbers, sin(32) and sin(54). Probably you want or express it as a product, or as an expressi...
-
Macbeth is reflecting on the Weird Sisters' prophecy and its astonishing accuracy. The witches were totally correct in predicting that M...
-
The play Duchess of Malfi is named after the character and real life historical tragic figure of Duchess of Malfi who was the regent of the ...
No comments:
Post a Comment