Saturday, September 15, 2018

College Algebra, Chapter 9, 9.5, Section 9.5, Problem 8

Prove that the formula $\displaystyle 1 \cdot 3 + 2 \cdot 4 + 3 \cdot 5
+ ... + n(n + 2) = \frac{n(n + 1)(2n + 7)}{6}$ is true for all natural
numbers $n$.

By using mathematical induction,

Let $P(n)$ denote the statement $\displaystyle 1 \cdot 3 + 2 \cdot 4 +
3 \cdot 5 + ... + n(n + 2) = \frac{n(n + 1)(2n + 7)}{6}$.

Then, we need to show that $P(1)$ is true. So,


$
\begin{equation}
\begin{aligned}

1 \cdot 3 =& \frac{(1)(1+1)(2(1)+ 7)}{6}
\\
\\
3 =& \frac{(2)(9)}{6}
\\
\\
3 =& \frac{18}{6}
\\
\\
3 =& 3

\end{aligned}
\end{equation}
$


Thus, we prove the first principle of the mathematical induction. More
over, assuming that $P(k)$ is true, then

$\displaystyle 1 \cdot 3 + 2 \cdot 4 + 3 \cdot 5 + ... k(k + 2) =
\frac{k(k + 1)(2k + 7)}{6}$

Now, by showing $P(k + 1)$, we have


$
\begin{equation}
\begin{aligned}

1 \cdot 3 + 2 \cdot 4 + 3 \cdot 5 + ... k (k + 2) + (k + 1)[(k + 1) + 2]
=&\frac{(k + 1)[(k + 1) + 1][2(k + 1) + 7]}{6}
\\
\\
1 \cdot 3 + 2 \cdot 4 + 3 \cdot 5 + ... k (k + 2) + (k + 1)(k + 3)
=& \frac{(k + 1)(k + 2)(2k + 9)}{6}
\\
\\
1 \cdot 3 + 2 \cdot 4 + 3 \cdot 5 + ... k (k + 2) + (k + 1)(k + 3)
=& \frac{(k^2 + 3k + 2)(2k + 9)}{6}
\\
\\
1 \cdot 3 + 2 \cdot 4 + 3 \cdot 5 + ... k (k + 2) + (k + 1)(k + 3)
=& \frac{2k^3 + 9k^2 + 6k^2 + 27k + 4k + 18}{6}
\\
\\
1 \cdot 3 + 2 \cdot 4 + 3 \cdot 5 + ... k (k + 2) + (k + 1)(k + 3)
=& \frac{2k^3 + 15k^2 + 31k + 18}{6}
\\
\\
1 \cdot 3 + 2 \cdot 4 + 3 \cdot 5 + ... k (k + 2) + (k + 1)(k + 3)
=& \frac{1}{3} k^ 3 + \frac{5}{2} k^2 + \frac{31}{6} k + 3
\end{aligned}
\end{equation}
$


We start with the left side and use the induction hypothesis to obtain
the right side of the equation:


$
\begin{equation}
\begin{aligned}

=& [1 \cdot 3 + 2 \cdot 4 + 3 \cdot 5 + k (k + 2)] + [(k + 1)(k + 3)]
&& \text{Group the first $k$ terms}
\\
\\
=& \frac{k(k + 1)(2k + 7)}{6} + (k + 1)(k + 3)
&& \text{Induction hypothesis}
\\
\\
=& \frac{2k^3 + 9k^2 + 7k}{6}
&& \text{Expand}
\\
\\
=& \frac{1}{3} k^3 + \frac{3}{2} k^2 + \frac{7}{6} k + k^2 + 4k + 3
&& \text{Simplify}
\\
\\
=& \frac{1}{3} k^3 + \frac{5}{2} k^2 + \frac{31}{6} k + 3

\end{aligned}
\end{equation}
$


Therefore, $P(k+1)$ follows from $P(k)$, and this completes the
induction step.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...