Saturday, September 29, 2018

Precalculus, Chapter 5, 5.4, Section 5.4, Problem 19

sin((13pi)/12)=sin(pi/2+pi/3+pi/4)
As we know that sin(pi/2+theta)=cos(theta)
:.sin((13pi)/12)=cos(pi/3+pi/4)
Now use the identity cos(x+y)=cos(x)cos(y)-sin(x)sin(y)
sin((13pi)/12)=cos(pi/3)cos(pi/4)-sin(pi/3)sin(pi/4)
sin((13pi)/12)=((1/2)(1/sqrt(2))-((sqrt(3)/2)(1/sqrt(2)))
sin((13pi)/12)=(1-sqrt(3))/(2sqrt(2))
sin((13pi)/12)=(sqrt(2)-sqrt(6))/4
cos((13pi)/12)=cos(pi/2+pi/3+pi/4)
We know that cos(pi/2+theta)=-sin(theta)
:.cos((13pi)/12)=-sin(pi/3+pi/4)
using identity sin(x+y)=sin(x)cos(y)+cos(x)sin(y)
cos((13pi)/12)=-(sin(pi/3)cos(pi/4)+cos(pi/3)sin(pi/4))
=-(sqrt(3)/2*1/sqrt(2)+1/2*1/sqrt(2))
=-(sqrt(3)+1)/(2sqrt(2))
=-(sqrt(6)+sqrt(2))/4
tan((13pi)/12)=sin((13pi)/12)/cos((13pi)/12)
plug in the values evaluated above,
tan((13pi)/12)=((sqrt(2)-sqrt(6))/4)/(-(sqrt(6)+sqrt(2))/4)
=(sqrt(2)-sqrt(6))/(-(sqrt(6)+sqrt(2)))
rationalizing the denominator,
=((sqrt(2)-sqrt(6))(sqrt(6)-sqrt(2)))/(-(6-2))
=(sqrt(12)-2-6+sqrt(12))/(-4)
=(2sqrt(12)-8)/(-4)
=(2*2sqrt(3)-8)/(-4)
=2-sqrt(3)

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...