Tuesday, September 18, 2018

f(x)=e^(-2x) Prove that the Maclaurin series for the function converges to the function for all x

Maclaurin series is a special case of Taylor series that is centered at c=0 . The expansion of the function about 0 follows the formula:
f(x)=sum_(n=0)^oo (f^n(0))/(n!) x^n
 or
f(x)= f(0)+(f'(0))/(1!)x+(f^2(0))/(2!)x^2+(f^3(0))/(3!)x^3+(f^4(0))/(4!)x^4 +...
To determine the Maclaurin polynomial of degree n=5 for the given function f(x)=e^(-2x) , we may apply the formula for Maclaurin series..
To list derivative functions f^n(x) , we may apply derivative formula for exponential function: d/(dx) e^u = e^u * (du)/(dx) .
f(x)=e^(-2x)
Let u =-2x then (du)/(dx)= -2 .
d/(dx) e^(-2x) = e^(-2x) *(-2)
                 = -2e^(-2x)
Applying d/(dx) e^(-2x)= -2e^(-2x)   for each derivative function, we get:
f'(x) = d/(dx) e^(-2x)
        =-2e^(-2x)
f^2(x) = d/(dx) (- 2e^(-2x))
            =-2 d/(dx) (e^(-2x))
            =(-2)*(-2e^(-2x))
            =4e^(-2x)
f^3(x) = d/(dx) (4e^(-2x))
            =4d/(dx) (e^(-2x))
            =4*(-2e^(-2x))
             =-8e^(-2x)
 f^4(x) = d/(dx) (- 8e^(-2x))
             =-8 d/(dx) (e^(-2x))
             =(-8)*(-2e^(-2x))
             =16e^(-2x)
 Plug-in x=0 for each f^n(x) , we get:
 f(0) =e^(-2*0) =1
 f'(0) =-2e^(-2*0)=-2
 f^2(0) =4e^(-2*0)=4
 f^3(0) =-8e^(-2*0)=-8
 f^4(0) =16e^(-2*0)=16
Note: e^(-2*0) = e^0 = 1.
 Plug-in the values on the formula for Maclaurin series, we get:
 sum_(n=0)^oo (f^n(0))/(n!) x^n
 = 1+(-2)/(1!)x+4/(2!)x^2+(-8)/(3!)x^3+16/(4!)x^4+...
 = 1-2/(1!)x+4/(2!)x^2-8/(3!)x^3+16/(4!)x^4+...
  =sum_(n=0)^oo (-2)^n/(n!)x^n
 =sum_(n=0)^oo (-2x)^n/(n!)
To determine the interval of convergence for the Maclaurin series: sum_(n=0)^oo (-2x)^n/(n!) , we may apply Ratio Test.  
In Ratio test, we determine the limit as: lim_(n-gtoo)|a_(n+1)/a_n| = L.
The series converges absolutely when it satisfies Llt1 .
For the  Maclaurin series: sum_(n=0)^oo (-2x)^n/(n!) , we have:
a_n=(-2x)^n/(n!)
Then,
1/a_n= (n!)/(-2x)^n
a_(n+1)=(-2x)^(n+1)/((n+1)!)
            =((-2x)^n*(-2x)^1)/((n+1)*(n!))
              =((-2x)^n(-2x))/((n+1)*(n!))
Applying the Ratio test, we set-up the limit as:
lim_(n-gtoo)|a_(n+1)/a_n|=lim_(n-gtoo)|a_(n+1)*1/a_n|
                          =lim_(n-gtoo)|((-2x)^n(-2x))/((n+1)*(n!))*(n!)/(-2x)^n|
Cancel out common factors: (-2x)^n  and (n!) .
lim_(n-gtoo)|(-2x)/(n+1)|
Evaluate the limit.
lim_(n-gtoo)|(-2x)/(n+1)|=|-2x| lim_(n-gtoo)|1/(n+1)|
                        =|2x|lim_(n-gtoo)1/(n+1)
                        =|2x|* 1/oo
                        = |2x|*0
                        =0
The L=0 satisfies  Llt1 for all x .
Thus, the Maclaurin series: sum_(n=0)^oo (-2x)^n/(n!) is absolutely converges for all x .
Interval of convergence: -ooltxltoo

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...