Tuesday, August 6, 2019

Single Variable Calculus, Chapter 7, 7.2-2, Section 7.2-2, Problem 40

Differentiate $f(x) = \ln \ln \ln x$ and find the domain of $f$.



$
\begin{equation}
\begin{aligned}

\text{if } f(x) =& \ln \ln \ln x, \text{ then}
\\
\\
f'(x) =& \frac{\displaystyle \frac{d}{dx} (\ln \ln (x)) }{\ln \ln (x)}
\\
\\
f'(x) =& \frac{\displaystyle \frac{\displaystyle \frac{d}{dx} (\ln x)}{\ln (x)}}{\ln \ln (x)}
\\
\\
f'(x) =& \frac{\displaystyle \frac{1}{x \ln (x)}}{\ln [\ln (x)]}
\\
\\
f'(x) =& \frac{1}{x \ln (x) \ln [\ln (x)]}

\end{aligned}
\end{equation}
$


For the domain of $f$, we want $\ln \ln x > 0$


$
\begin{equation}
\begin{aligned}

& \ln \ln x > 0
\\
\\
& e^{\ln \ln x} > e^0
\\
\\
& \ln x > 1
\\
\\
& e^{\ln x} > e^1
\\
\\
x > e^1

\end{aligned}
\end{equation}
$


Therefore, the domain of $f$ is $(e, \infty)$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...