Thursday, August 29, 2019

Single Variable Calculus, Chapter 3, 3.1, Section 3.1, Problem 52

Determine whether $f'(0)$ exists in the function
$
\displaystyle
f(x) = \left\{
\begin{array}{c}
x^2 \sin\left(\frac{1}{x}\right) & \text{if} & x \neq 0\\
0 & \text{if} & x = 0
\end{array}\right.
$



Based from the definition,



$
\displaystyle
f'(a) = \lim\limits_{x \to a} \frac{f(x) - f(a)}{x-a}
$



$
\begin{equation}
\begin{aligned}
f'(0) & = \lim\limits_{x \to 0} \frac{x^2 \sin \left( \frac{1}{x}\right) - f(0)}{x-0}\\
f'(0) & = \lim\limits_{x \to 0} \frac{x\cancel{^2}\sin \left( \frac{1}{x}\right)}{\cancel{x}}\\
f'(0) & = \lim\limits_{x \to 0} x \sin \left(\frac{1}{x}\right)
\end{aligned}
\end{equation}
$



Note that we cannot use $\displaystyle \lim\limits_{x \to 0} x \sin \left(\frac{1}{x}\right) =
\lim\limits_{x \to 0} x \cdot \lim\limits_{x \to 0} \sin \left(\frac{1}{x}\right)$



because $\displaystyle \lim\limits_{x \to 0} \sin \left(\frac{1}{x}\right)$ does not exist. However, since



$\quad\displaystyle -1 \leq \sin \left(\frac{1}{x}\right) \leq 1$



We have,



$\quad\displaystyle -x^2 \leq \sin \left(\frac{1}{x}\right) \leq x^2$



We know that,



$\quad\displaystyle \lim\limits_{x \to 0^-} (-x^2) = -0 = 0 \quad \text{ and } \quad \lim\limits_{x \to 0^+} x^2 = 0$



Taking $f(x) = -x^2$, $\displaystyle g(x) = x^2 \sin \left(\frac{1}{x}\right)$ and $h(x) = x^2$ in the squeeze theorem we obtain



$\quad\displaystyle \lim\limits_{x \to 0} x^2 \sin \left( \frac{1}{x}\right) = 0$



Therefore,



$\quad f'(0)$ exists and is equal to 0.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...