Monday, August 26, 2019

Single Variable Calculus, Chapter 4, 4.1, Section 4.1, Problem 64

$ \displaystyle F = \frac{\mu W}{\mu \sin \theta + \cos \theta}; \quad 0 \leq \theta \leq \frac{\pi}{2}$ where $\mu$ is a positive constant called the coefficient of friction.
$W$ represents the weight of an object.
$\theta = $ angle
$F = $ force
Show that $F$ is minmized when $\tan \theta = \mu$.

Taking the derivative of the function,
$\displaystyle \frac{dF}{d\theta} = \mu W \cdot \frac{d}{d\theta} \left( \frac{1}{\mu \sin \theta + \cos \theta} \right)$

Using Quotient Rule,


$
\begin{equation}
\begin{aligned}
\frac{dF}{d \theta} &= \mu W \left[ \frac{\mu\sin\theta + \cos \theta \cdot \frac{d}{d\theta} (1) - 1 \cdot \frac{d}{d\theta}(\mu \sin \theta + \cos \theta) }{(\mu \sin \theta + \cos \theta)^2}\right]\\
\\
\frac{dF}{d \theta} &= \mu W \left[ \frac{0 - \left(\mu \cos \theta + (-\sin \theta) \right)}{(\mu \sin \theta + \cos \theta)^2} \right]\\
\\
\frac{dF}{d \theta} &= \frac{\mu W \left( \mu \cos \theta + (-\sin \theta) \right)}{(\mu \sin \theta + \cos \theta)^2}
\end{aligned}
\end{equation}
$


When $\displaystyle \frac{dF}{d\theta} = 0$,


$
\begin{equation}
\begin{aligned}
0 & = \frac{-\mu W (\mu \cos \theta - \sin \theta) }{(\mu \sin \theta + \cos \theta)^2}\\
\\
0 &= \mu \cos \theta - \sin \theta\\
\\
\frac{\sin \theta}{\cos \theta} &= \frac{\mu \cancel{\cos \theta}}{\cancel{\cos \theta}}
\\
\tan \theta &= \mu

\end{aligned}
\end{equation}
$


It shows that $F$ is minimized when $\tan \theta = \mu$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...