Tuesday, August 27, 2019

Single Variable Calculus, Chapter 5, 5.3, Section 5.3, Problem 28

Find the integral 10(3+xx)dx

Using 2nd Fundamental Theorem of Calculus

baf(x)dx=F(b)F(a), where F is any anti-derivative of f.

Let f(x)=3+xx or f(x)=3+(x)23, then


F(x)=3(x0+10+1)+(x32+132+1)+CF(x)=3x+x5252+CF(x)=3x+2x525+C



10(3+xx)dx=F(1)F(0)10(3+xx)dx=3(1)+2(1)525+C[3(0)+2(0)525+C]10(3+xx)dx=3+25+C00C10(3+xx)dx=15+2510(3+xx)dx=175 or 10(3+xx)dx=3.4

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...