Tuesday, August 27, 2019

Single Variable Calculus, Chapter 5, 5.3, Section 5.3, Problem 28

Find the integral $\displaystyle \int^1_0 (3 + x \sqrt{x}) dx$

Using 2nd Fundamental Theorem of Calculus

$\displaystyle \int^b_a f(x) dx = F(b) - F(a)$, where $F$ is any anti-derivative of $f$.

Let $\displaystyle f(x) = 3 + x \sqrt{x}$ or $f(x) = 3 + (x)^{\frac{2}{3}}$, then


$
\begin{equation}
\begin{aligned}

F(x) =& 3 \left( \frac{x^{0 + 1}}{0 + 1} \right) + \left( \frac{x^{\frac{3}{2} + 1}}{\displaystyle \frac{3}{2} + 1} \right) + C
\\
\\
F(x) =& 3x + \frac{x^{\frac{5}{2}}}{\displaystyle \frac{5}{2}} + C
\\
\\
F(x) =& 3x + \frac{2x^{\frac{5}{2}}}{5} + C

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

& \int^1_0 (3 + x \sqrt{x}) dx = F(1) - F(0)
\\
\\
& \int^1_0 (3 + x \sqrt{x}) dx = 3(1) + \frac{2(1)^{\frac{5}{2}}}{5} + C - \left[ 3(0) + \frac{2(0)^{\frac{5}{2}}}{5} + C \right]
\\
\\
& \int^1_0 (3 + x \sqrt{x}) dx = 3 + \frac{2}{5} + C - 0 - 0 - C
\\
\\
& \int^1_0 (3 + x \sqrt{x}) dx = \frac{15 + 2}{5}
\\
\\
& \int^1_0 (3 + x \sqrt{x}) dx = \frac{17}{5}
\\
\\
& \text{ or }
\\
\\
& \int^1_0 (3 + x \sqrt{x}) dx = 3.4



\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...