Saturday, August 17, 2019

Single Variable Calculus, Chapter 8, 8.1, Section 8.1, Problem 20

Evaluate $\displaystyle \int^1_0 \left( x^2 + 1 \right) e^{-x} dx$
$\displaystyle \int^1_0 \left( x^2 + 1 \right) e^{-x} dx = \int^1_0 \left( x^2 e^{-x} \right) dx + \int^1_0 e^{-x} dx $

To evaluate $\displaystyle \int^1_0\left( x^2 e^{-x} \right) dx$, we must use integration by parts, so if
we let $u = x^2$ and $dv = e^{-x} dx$, then
$du = 2x dx$ and $\displaystyle v = \int e^{-x} dx = -e^{-x}$

So,

$
\begin{equation}
\begin{aligned}
\int^1_0 \left( x^2 e^{-x} \right) dx = uv - \int vdu &= -x^2 e^{-x} -\int -e^{-x} (2x dx)\\
\\
&= -x^2 e^{-x} + 2 \int e^{-x} (xdx)
\end{aligned}
\end{equation}
$


To evaluate $\displaystyle \int xe^{-x} dx$, we must use integration by parts once more, so if we let $u_1 = x$ and $dv_1 = e^{-x} dx$, then $du_1 = dx$ and $\displaystyle v_1 = \int e^{-x} dx = - e^{-x}$

So,

$
\begin{equation}
\begin{aligned}
\int xe^{-x} dx = uv - \int vdu &= -xe^{-x} - \int - e^{-x} dx\\
\\
&= - x e^{-x} + \int e^{-x} dx\\
\\
&= -x e^{-x} - e^{-x}
\end{aligned}
\end{equation}
$


Therefore,

$
\begin{equation}
\begin{aligned}
\int^1_0 \left( x^2 + 1 \right) e^{-x} dx &= \int^1_0 \left( x^2 e^{-x} \right) dx + \int^1_0 e^{-x} dx\\
\\
&= -x^2 e^{-x} + 2 \int x e^{-x} dx + \int^1_0 e^{-x} dx\\
\\
&= -x^2 e^{-x} + 2 \left[ -x e^{-x} - e^{-x} \right] + \int^1_0 e^{-x} dx\\
\\
&= -x^2 e^{-x} - 2xe^{-x} - 2e^{-x} + \left[ -e^{-x} \right]^1_0\\
\\
&= \left[ -x^2 e^{-x} - 2x e^{-x} - 3e^{-x} \right]^1_0\\
\\
&= \left[ -1^2 e^{-1} -2(1)e^{-1} - 3e^{-1} - \left( -0^2e^{-0} - 2 (0) e^{-0} - 3e^{-0}\right) \right]\\
\\
&= -\frac{1}{e} - \frac{2}{e} - \frac{3}{e} + 0 + 0 + \frac{3}{e^0}\\
\\
&= 3 - \frac{6}{e}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...