Suppose that a tangent line is drawn to the hyperbola $xy = c$ at a point $P$.
a.) Prove that the midpoint of the line segment cut from this tangent line lay the coordinate axes is $P$.
b.) Prove that the triangle formed by the tangent line and the coordinate axes always has the same area, no
matter where $P$ is located on the hyperbola.
$
\begin{equation}
\begin{aligned}
\text{a.) since } xy &= c,\\
y &= \frac{c}{x}\\
\frac{dy}{dx} &= c \frac{d}{dx}\left(\frac{1}{x}\right)\\
\frac{dy}{dx} &= c \left(\frac{-1}{x^2}\right)\\
\frac{dy}{dx} &= -\frac{c}{x^2}
\end{aligned}
\end{equation}
$
Now we can get the tangent line through $\displaystyle P \left(x_1, \frac{c}{x}\right)$ by using point slope form.
$
\begin{equation}
\begin{aligned}
y -y_1 &= m(x-x_1)\\
y - \left(\frac{c}{x_1}\right) &= \frac{-c}{x_1^2}(x-x_1)\\
y-\frac{c}{x_1} &= \frac{-c}{x_1^2} x + \frac{c}{x_1}\\
y &= \frac{-c}{x_1^2} + \frac{2c}{x_1}
\end{aligned}
\end{equation}
$
Notice that the $y$-intercept $\displaystyle \frac{2c}{x_1}$ is twice the $y$-coordinate of $P$.
Solving for $x$-intercept,
$
\begin{equation}
\begin{aligned}
y &= \frac{c}{x_1^2} + \frac{2c}{x_1}\\
0 &= \frac{c}{x_1^2}x + \frac{2c}{x_1}\\
\frac{\cancel{c}x}{x_1^\cancel{2}} &= \frac{2\cancel{c}}{\cancel{x_1}}\\
x &= 2x_1
\end{aligned}
\end{equation}
$
It also shows that the $x$-intercept $2x_1$ is twice the $x$-coordinate of $P$. Therefore, the
midpoint of the line segment cut from the tangent line by the coordinate axes is $P$
b.) Solving for Area of triangle,
$
\begin{equation}
\begin{aligned}
\text{Area } &= \frac{1}{2}bh\\
\text{Area } &= \frac{1}{2} \quad \text{(x}\text{-intercept)} (y-\text{intercept)}\\
\text{Area } &= \frac{1}{\cancel{2}} \quad (\cancel{2}\cancel{x_1})\left(\frac{2c}{\cancel{x_1}}\right)\\
\text{Area } &= 2c
\end{aligned}
\end{equation}
$
It shows that no matter where $P$ is located on the hyperbola, the triangle formed by the tangent line and
coordinate axes always has the same area since the area is independent of point $P$.
Saturday, August 17, 2019
Single Variable Calculus, Chapter 3, 3.3, Section 3.3, Problem 98
Subscribe to:
Post Comments (Atom)
Why is the fact that the Americans are helping the Russians important?
In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...
-
There are a plethora of rules that Jonas and the other citizens must follow. Again, page numbers will vary given the edition of the book tha...
-
Lionel Wallace is the subject of most of "The Door in the Wall" by H.G. Wells. The narrator, Redmond, tells about Wallace's li...
-
In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...
-
The poem contrasts the nighttime, imaginative world of a child with his daytime, prosaic world. In the first stanza, the child, on going to ...
-
Robinson Crusoe, written by Daniel Defoe, is a novel. A novel is a genre defined as a long imaginative work of literature written in prose. ...
-
In Celie's tenth letter to God, she describes seeing her daughter in a store with a woman. She had not seen her daughter since the night...
-
Let's start with terms: "expected value" means the average amount that you would win or lose over a large number of plays. The...
No comments:
Post a Comment