Friday, August 30, 2019

int (sqrt(x)/(sqrt(x) - 3)) dx Find the indefinite integral by u substitution. (let u be the denominator of the integral)

To apply u-substitution , we let u = sqrt(x)-3 .
Then   du = 1/(2sqrt(x) dx .
Rearrange  du = 1/(2sqrt(x)) dx into dx =2sqrt(x) du
Substituting dx=2sqrt(x) du and u =sqrt(x)-3 :
int sqrt(x)/(sqrt(x)-3)dx = int sqrt(x)/u*2sqrt(x) dx        
Simplify: sqrt(x)*sqrt(x) = x
int sqrt(x)/u *2sqrt(x) du = int (2x)/u du
Rearrange u=sqrt(x)-3 into sqrt(x)=u+3
Squaring both sides ofsqrt(x)=u+3 then
x=u^2+6u+9
int (2x)/u du = 2 int (u^2+6u+9)/u du
                   = 2 int (u^2/u + 6u/u + 9/u) du
                   = 2 int (u + 6 + 9/u) du
                   =2 *(u^2/2+6u+9lnabs|u|) +C
  Substitute u =sqrt(x)-3:
2 *(u^2/2+6u+9ln|u|)+C =2 *((sqrt(x)-3)^2/2+6(sqrt(x)-3)+9ln|(sqrt(x)-3)|)+C
                                    =(sqrt(x)-3)^2+12(sqrt(x)-3)+18ln|(sqrt(x)-3)| +C
                                    = x-6sqrt(x)+9+12sqrt(x)-36 +18ln|sqrt(x)-3|+C
                                  = x + 6sqrt(x)-27 +18ln|sqrt(x)-3|+C
 
 
 
 
 
 

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...