Sunday, August 18, 2019

Single Variable Calculus, Chapter 7, Review Exercises, Section Review Exercises, Problem 74

Evaluate the $\displaystyle \lim_{x \to \infty} \frac{e^{4x} - 1 - 4x}{x^2}$

By applying L' Hospitals Rule..


$
\begin{equation}
\begin{aligned}

\lim_{x \to \infty} \frac{e^{4x} - 1 - 4x}{x^2} =& \lim_{x \to \infty} \frac{e^{4x} (4) - 0 - 4(1)}{2x} = \lim_{x \to \infty} \frac{4(e^{4x} - 1)}{2x}


\end{aligned}
\end{equation}
$


If we evaluate the unit, we will still get an indeterminate form, so we must apply the L' Hospitals Rule once more. Thus,


$
\begin{equation}
\begin{aligned}

\lim_{x \to \infty} \frac{4(e^{4x} - 1)}{2x} = \lim_{x \to \infty} \frac{4(e^{4x})(4)}{2} =& \lim_{x \to \infty} \frac{16 e^{4x}}{2}
\\
\\
=& \frac{16 e^{4 \infty}}{2}
\\
\\
=& \infty

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...