Thursday, August 1, 2019

Single Variable Calculus, Chapter 3, 3.3, Section 3.3, Problem 53

Find the equation of the tangent line and normal line of the curve $y = x + \sqrt{x}$ at the point $(1,2)$

Required:

Equation of the tangent line and the normal line at $P(1,2)$

Solution:

Let $y' = m$ (slope)


$
\begin{equation}
\begin{aligned}

\qquad y' = m_T =& \text{Slope of the tangent line}\\
m_N =& \text{Slope of the normal line}
&&
\\
\\
\qquad y' = m_T =& \frac{d}{dx} (x) + \frac{d}{dx} (x^{\frac{1}{2}})
&&
\\
\\
\qquad m_T =& 1 + \frac{1}{2(x)^{\frac{1}{2}}}
&& \text{Substitute the value of $x$ which is 1}
\\
\\
\qquad m_T =& 1 + \frac{1}{2(1)^{\frac{1}{2}}}
&& \text{Simplify the equation}
\\
\\
\qquad m_T =& \frac{3}{2}
&&
\\
\\


\end{aligned}
\end{equation}
$


Solving for the equation of the tangent line:


$
\begin{equation}
\begin{aligned}

\qquad y - y_1 =& m_T(x - x_1)
&& \text{Substitute the value of the slope $(m_T)$ and the given point}
\\
\\
\qquad y - 2 =& \frac{3}{2} (x - 1)
&& \text{Multiply $\large \frac{3}{2}$ the equation}
\\
\\
\qquad y - 2 =& \frac{3x - 3}{2}
&& \text{Add $2$ to each sides}
\\
\\
\qquad y =& \frac{3x - 3}{2} + 2
&& \text{Get the LCD}
\\
\\
\qquad y =& \frac{3x - 3 + 4}{2}
&& \text{Combine like terms}
\\
\\
\qquad y =& \frac{3x + 1}{2}
&& \text{Equation of the tangent line to the curve at $P (1,2)$}


\end{aligned}
\end{equation}
$


Solving for the equation of the normal line:


$
\begin{equation}
\begin{aligned}

m_N =& \frac{-1}{m_T}
&&
\\
\\
m_N =& \frac{-1}{\displaystyle \frac{3}{2}}
&&
\\
\\
m_N =& \frac{-2}{3}
&&
\\
\\
y - y_1 =& m_N (x - x_1)
&& \text{Substitute the value of slope $(m_N)$ and the given point}
\\
\\
y - 2 =& \frac{-2}{3} (x - 1)
&& \text{Multiply $\large \frac{-2}{3}$ to the equation}
\\
\\
y - 2 =& \frac{-2x + 2}{3}
&& \text{Add 2 to each sides}
\\
\\
y =& \frac{-2x + 2}{3} + 2
&& \text{Get the LCD}
\\
\\
y =& \frac{-2x + 2 + 6}{3}
&& \text{Combine like terms}
\\
\\
y =& \frac{-2x + 8}{3}
&& \text{Equation of the normal line at $P(1,2)$}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...