r=1-sin theta
To solve, express the polar equation in parametric form. To convert it to parametric equation, apply the formula
x = rcos theta
y=r sin theta
Plugging in r=1-sin theta , the formula becomes:
x=(1-sin theta)cos theta=cos theta -sin theta cos theta
y = (1-sin theta)sin theta=sin theta -sin^2 theta
So the equivalent parametric equation of r= 1-sin theta is:
x=cos theta -sin theta cos theta
y=sin theta -sin^2 theta
Then, take the derivative of x and y with respect to theta.
dx/(d theta) = -sintheta - (sintheta*(-sintheta) + costheta*costheta)
dx/(d theta)=-sintheta+sin^2theta-cos^2theta
dy/(d theta) = costheta - 2sinthetacostheta
Take note that the slope of the tangent is equal to dy/dx.
m= (dy)/(dx)
To get the dy/dx of a parametric equation, apply the formula:
dy/dx = (dy/(d theta))/(dx/(d theta))
When the tangent line is horizontal, the slope of the tangent is zero.
0 = (dy/(d theta)) / (dx/(d theta))
This implies that the polar curve will have a horizontal tangent when dy/(d theta)=0 and dx/(d theta) !=0.
Setting the derivative of y yields:
dy/(d theta) = 0
costheta - 2sinthetacostheta=0
costheta(1 - 2sintheta) =0
costheta = 0
theta=pi/2,(3pi)/2
1-2sintheta=0
-2sintheta=-1
sintheta=1/2
theta=pi/6,(5pi)/6
Take note that at theta=pi/2 , the value of dx/(d theta) is zero. Since both dy/(d theta) and dx/(d theta) are zero, the slope at this value of theta is indeterminate.
m=0/0 (indeterminate)
So the polar curve has horizontal tangents at:
theta_1 = pi/6 + 2pin
theta_2= (5pi)/6+2pin
theta_3= (3pi)/2+2pin
where n is any integer.
To determine the points (r, theta) , plug-in the values of theta to the polar equation.
r=1-sin theta
theta_1 = pi/6 + 2pin
r_1=1-sin(pi/6 + 2pin)=1-sin(pi/6) = 1-1/2=1/2
theta_2= (5pi)/6+2pin
r_2=1-sin((5pi)/6+2pin)=1-sin((5pi)/6)= 1 -1/2=1/2
theta_3= (3pi)/2+2pin
r_3=1-sin((3pi)/2+2pin)=1-sin((3pi)/2)=1-(-1)=2
Therefore, the polar curve has horizontal tangent at points
(1/2, pi/6+2pin) , (1/2, (5pi)/6+2pin) , and (2, (3pi)/2+2pin) .
Moreover, when the tangent line is vertical, the slope is undefined.
u n d e f i n e d =(dy/(d theta)) / (dx/(d theta))
This implies that the polar curve will have vertical tangent when dx/(d theta)=0 and dy/(d theta)!=0 .
Setting the derivative of x equal to zero yields:
dx/(d theta) = 0
-sintheta+sin^2theta-cos^2theta=0
-sin theta + sin^2 theta-(1-sin^2 theta) = 0
2sin^2 theta -sin theta -1=0
(2sin theta +1)(sin theta -1) = 0
2sin theta + 1=0
sin theta=-1/2
theta = (7pi)/6,(11pi)/6
sin theta -1=0
sin theta=1
theta=pi/2
Take note that at theta =pi/2 , both dy/(d theta ) and dx/(d theta) are zero. So the slope is indeterminate at this value of theta.
m=0/0 (indeterminate)
So the polar curve has vertical tangents at:
theta_1 =(7pi)/6+2pin
theta_2=(11pi)/6+2pin
where n is any integer.
To determine the points (r, theta) , plug-in the values of theta to the polar equation.
r=1-sin theta
theta_1=(7pi)/6+2pin
r_1=1-sin((7pi)/6+2pin)=1-sin((7pi)/6)=1-(-1/2)=3/2
theta_2=(11pi)/6+2pin
r_2=1-sin((11pi)/6+2pin)=1-sin((11pi)/6)=1-(-1/2)=3/2
Therefore, the polar curve has vertical tangent at points (3/2, (7pi)/6+2pin) and (3/2, (11pi)/6+2pin) .
Thursday, October 8, 2015
Calculus of a Single Variable, Chapter 10, 10.4, Section 10.4, Problem 65
Subscribe to:
Post Comments (Atom)
Why is the fact that the Americans are helping the Russians important?
In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...
-
There are a plethora of rules that Jonas and the other citizens must follow. Again, page numbers will vary given the edition of the book tha...
-
The poem contrasts the nighttime, imaginative world of a child with his daytime, prosaic world. In the first stanza, the child, on going to ...
-
The given two points of the exponential function are (2,24) and (3,144). To determine the exponential function y=ab^x plug-in the given x an...
-
The play Duchess of Malfi is named after the character and real life historical tragic figure of Duchess of Malfi who was the regent of the ...
-
The only example of simile in "The Lottery"—and a particularly weak one at that—is when Mrs. Hutchinson taps Mrs. Delacroix on the...
-
Hello! This expression is already a sum of two numbers, sin(32) and sin(54). Probably you want or express it as a product, or as an expressi...
-
Macbeth is reflecting on the Weird Sisters' prophecy and its astonishing accuracy. The witches were totally correct in predicting that M...
No comments:
Post a Comment