Monday, October 26, 2015

Calculus and Its Applications, Chapter 1, Review Exercises, Section Review Exercises, Problem 32

Below is the graph of the function $y = g(x)$. Determine the simplified difference quotient for
$f(x) = 2x^2 - 3$.



We have,
If $f(x) = 2x^2 - 3$, so

$
\begin{equation}
\begin{aligned}
f(x + h) &= 2(x + h)^2 -3 \\
\\
&= 2(x^2 + 2xh + h^2) - 3\\
\\
&= 2x^2 + 4xh + 2h^2 - 3
\end{aligned}
\end{equation}
$


Then,

$
\begin{equation}
\begin{aligned}
f(x + h) - f(x) &= 2x^2 + 4xh + 2h^2 - 3 - (2x^2 - 3) \\
\\
&= 2x^2 + 4xh + 2h^2 - 3 - 2x^2 + 3\\
\\
&= 4xh + 2h^2
\end{aligned}
\end{equation}
$


Thus,

$
\begin{equation}
\begin{aligned}
\frac{f(x + h) - f(x)}{h} &= \frac{4xh + 2h^2}{h}\\
\\
&= \frac{2h (2x + h)}{h}\\
\\
&= 2(2x + h)
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...