Thursday, October 22, 2015

Single Variable Calculus, Chapter 3, 3.4, Section 3.4, Problem 49

Differentiate each Trigonometric Identity to obtain new identity.
$\displaystyle \text{(a) }\tan x = \frac{\sin x}{\cos x} \qquad \text{(b) } \sec x = \frac{1}{\cos x} \qquad \text{(c) } \sin x + \cos x = \frac{1+ \cot x}{\csc x} $

$
\begin{equation}
\begin{aligned}
\text{a.) } \tan x &= \frac{\sin x}{\cos x}\\
\\
\frac{d}{dx}(\tan x) &= \frac{\cos x \frac{d}{dx} \sin x - \sin x \frac{d}{dx} \cos x}{(\cos x)^2} && \text{Applying quotient rule}\\
\\
\sec ^2 x &= \frac{\cos x(\cos x) - \sin x ( - \sin x)}{ (\cos x)^2}\\
\\
\sec ^2 x &= \frac{\cos ^2 x + \sin ^2x}{(\cos x)^2} && \text{Applying the Pythagorean Identity for the trigonometric function } \sin^2x + \cos^2 x = 1\\
\\
\sec ^2 x &= \frac{1}{(\cos x)^2} && \text{Applying the identity } \sec x = \frac{1}{\cos x}\\
\\
\sec ^2 x & = \sec ^2 x

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}
\text{b.) } \sec x &= \frac{1}{\cos x}\\
\\
\frac{d}{dx} \sec x & = \frac{\cos x \frac{d}{dx} (1) - 1 \frac{d}{dx} \cos x}{(\cos x)^2} && \text{Applying quotient rule}\\
\\
\sec x \tan x & = \frac{0-1 ( - \sin x ) }{(\cos x)^2}\\
\\
\sec x \tan x & = \frac{\sin x}{(\cos x)^2} && \text{Break down two parts}\\
\\
\sec x \tan x & = \frac{\sin x}{\cos x} \cdot \left( \frac{1}{\cos x}\right)\\
\\
\sec x \tan x & = \sec x \tan x
\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}
\text{c.) } \sin x + \cos x &= \frac{1+ \cot x}{\csc x}\\
\\
\frac{d}{dx} \sin x + \frac{d}{dx} \cos x &= \frac{\csc x \frac{d}{dx} (1+\cot x) - (1+\cot x) \frac{d}{dx} \csc x}{(\csc x)^2}\\
\\
\cos x - \sin x &= \frac{\csc x (-\csc^2 x) - ( 1+ \cot x) (-\csc x \cot x)}{(\csc x)^2}\\
\\
\cos x - \sin x &= \frac{-\csc ^3 x + \csc x \cot x + \csc x \cot^2 x}{(\csc x)^2}\\
\\
\cos x - \sin x &= \frac{-\csc^3 x + \csc x \frac{\cos x}{\sin x} + \csc x \frac{\cos^2 x}{\sin ^2 x}}{(\csc x)^2}\\
\\
\cos x - \sin x &= \frac{-\csc^3 x + \csc^2 x \cos x + \csc^3 x \cos x}{(\csc x)^2}\\
\\
\cos x - \sin x &= \frac{\cancel{\csc ^2 x}(- \csc x + \cos x + \cos x \csc x)}{\cancel{(\csc x)^2}}\\
\\
\cos x - \sin x &= \frac{1}{\sin x} + \cos x + \frac{\cos^2 x}{\sin x}\\
\\
\cos x - \sin x &= \frac{\cos ^2 x - 1}{ \sin x} + \cos x && (\cos^x - 1 = -\sin^2 x, \text{ Using Pythagorean Identity})\\
\\
\cos x - \sin x &= - \frac{\sin ^{\cancel{2}}x}{\cancel{\sin x}} + \cos x\\

\end{aligned}
\end{equation}\\
\qquad \boxed{\cos x - \sin x = \cos x - \sin x }
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...