Thursday, October 22, 2015

Single Variable Calculus, Chapter 3, 3.4, Section 3.4, Problem 49

Differentiate each Trigonometric Identity to obtain new identity.
(a) tanx=sinxcosx(b) secx=1cosx(c) sinx+cosx=1+cotxcscx

a.) tanx=sinxcosxddx(tanx)=cosxddxsinxsinxddxcosx(cosx)2Applying quotient rulesec2x=cosx(cosx)sinx(sinx)(cosx)2sec2x=cos2x+sin2x(cosx)2Applying the Pythagorean Identity for the trigonometric function sin2x+cos2x=1sec2x=1(cosx)2Applying the identity secx=1cosxsec2x=sec2x



b.) secx=1cosxddxsecx=cosxddx(1)1ddxcosx(cosx)2Applying quotient rulesecxtanx=01(sinx)(cosx)2secxtanx=sinx(cosx)2Break down two partssecxtanx=sinxcosx(1cosx)secxtanx=secxtanx



c.) sinx+cosx=1+cotxcscxddxsinx+ddxcosx=cscxddx(1+cotx)(1+cotx)ddxcscx(cscx)2cosxsinx=cscx(csc2x)(1+cotx)(cscxcotx)(cscx)2cosxsinx=csc3x+cscxcotx+cscxcot2x(cscx)2cosxsinx=csc3x+cscxcosxsinx+cscxcos2xsin2x(cscx)2cosxsinx=csc3x+csc2xcosx+csc3xcosx(cscx)2cosxsinx=\cancelcsc2x(cscx+cosx+cosxcscx)\cancel(cscx)2cosxsinx=1sinx+cosx+cos2xsinxcosxsinx=cos2x1sinx+cosx(cosx1=sin2x, Using Pythagorean Identity)cosxsinx=sin\cancel2x\cancelsinx+cosxcosxsinx=cosxsinx

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...