Monday, October 12, 2015

Single Variable Calculus, Chapter 3, 3.3, Section 3.3, Problem 61

The motion's equation of a particle is $s=t^3-3t$, where $s$ is in meters and $t$ is in seconds.
a.) Find the velocity and aceleration as function of $t$
Given: $s = t^3-3t$
Take the 1st derivative of the given equation to get the velocity and 2nd derivative to get the acceleration.


$
\begin{equation}
\begin{aligned}
V(t) &= t^3 - 3t\\
V'(t)&= \frac{d}{dt}(t^3) - 3 \frac{d}{dt}(t) && \text{(Derive each term)}\\
V'(t)&= 3t^2-3(1) && \text{(Simplify the equation)}
\end{aligned}
\end{equation}
$


The velocity of a particle as function of $t$ is $V'(t) = 3t^2-3$


$
\begin{equation}
\begin{aligned}
a(t) &= 3t^2 - 3\\
a'(t)&= 3\frac{d}{dt} (t^2) - \frac{d}{dt}(3)\\
a'(t)&= (3)(2t) -0\\
\end{aligned}
\end{equation}
$


The acceleration of a particle as function of $t$ is $a'(t) = 6t$

b.) Find the acceleration after $2s$
Given: $a(t) = 6t \qquad t = 2$ sec.

$
\begin{equation}
\begin{aligned}
a(t) &= 6t && \text{Use the formula of acceleration in part(a)}\\
a(2) &= 6(2) && \text{Substitute the given time}
\end{aligned}
\end{equation}
$


The acceleration after $2s$ is $\displaystyle a = 12 \frac{m}{s^2}$

c.) Find the acceleration when the velocity is 0.

$
\begin{equation}
\begin{aligned}
& \text{Given: }\\
& \phantom{x} & V(t) &= 0\\
& \text{Equation in part(a):}\\
& \phantom{x} & V(t) &= 3t^2 -3\\
& \phantom{x} & a(t) &= 6t
\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}
V(t) &= 3t^2 - 3 && \text{Substitute the given Velocity}\\
\\
0 &= 3t^2 - 3 && \text{Add 3 to each sides}\\
\\
3t^2 &= 3 && \text{Divide both sides by 3}\\
\\
\frac{3t^2}{3} &= \frac{3}{3} && \text{Take the square root of both lines}\\
\\
\sqrt{t^2} &= \sqrt{1} && \text{Simplify the equation}\\
\\
t &= 1 && \text{Time when Velocity is 0}\\
\\
a(t) &= 6t && \text{Substitute the computed time when Velocity is 0}\\
\\
a(1) &= 6(1) && \text{Simplify the equation}
\end{aligned}
\end{equation}
$


When the velocity is 0, the value of the acceleration is $\displaystyle a = 6 \frac{m}{s^2}$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...