Monday, October 19, 2015

College Algebra, Chapter 5, 5.4, Section 5.4, Problem 24

Determine the solution of the exponential equation $7^{\frac{x}{2}} = 5^{1-x}$.

$
\begin{equation}
\begin{aligned}
7^{\frac{x}{2}} &= 5^{1-x}\\
\\
\log 7^{\frac{x}{2}} &=\log 5^{1-x} && \text{Take $\log$ of each side}\\
\\
\frac{x}{2} \log 7 &= (1-x) \log 5 && \text{Law of Logarithms } \log_a A^c = C \log_a A\\
\\
\frac{x}{2} \frac{\log 7}{\log 5} &= 1 - x && \text{Divide by } \log 5\\
\\
\frac{x\log7}{x\log 5} + x &= 1 && \text{Add } x\\
\\
x \left( \frac{\log 7}{2 \log 5} + 1 \right) &= 1 && \text{Factor out } x\\
\\
x &= \frac{1}{\left( \frac{\log 7}{2 \log 5} + 1 \right)} && \text{Divide by } \frac{\log 7}{2 \log 5} + 1\\
\\
x &= 0.6232
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...