Monday, October 19, 2015

College Algebra, Chapter 1, 1.4, Section 1.4, Problem 66

Find all solutions of the equation $2x^2 + 3 = 2x$ and express them in the form $a + bi$.


$
\begin{equation}
\begin{aligned}

2x^2 + 3 =& 2x
&& \text{Given}
\\
\\
2x^2 - 2x + 3 =& 0
&& \text{Subtract } 2x \text{ to both sides of the equation}
\\
\\
x^2 - x + \frac{3}{2} =& 0
&& \text{Subtract } \frac{3}{2}
\\
\\
x^2 - x + \frac{1}{4} =& \frac{-3}{2} + \frac{1}{4}
&& \text{Complete the square: add } \left( \frac{-1}{2} \right)^2 = \frac{1}{4}
\\
\\
\left( x - \frac{1}{2} \right)^2 =& \frac{-5}{4}
&& \text{Perfect square}
\\
\\
x - \frac{1}{2} =& \pm \sqrt{\frac{-5}{4}}
&& \text{Take the square root}
\\
\\
x - \frac{1}{2} =& \pm \sqrt{\frac{5i^2}{4}}
&& \text{Recall that } i^2 = -1
\\
\\
x =& \frac{1}{2} \pm \frac{\sqrt{5}}{2} i
&& \text{Add } \frac{1}{2} \text{ and simplify}
\\
\\
\left( x - \left( \frac{1 + \sqrt{5}}{2} \right) \right) & \left( x - \left( \frac{1 - \sqrt{5}}{2} \right) \right) = 0
&&


\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...