Sunday, October 25, 2015

College Algebra, Chapter 1, 1.1, Section 1.1, Problem 32

The equation $\displaystyle \frac{1}{t-1} + \frac{t}{3t- 2} = \frac{1}{2} $ is either linear or equivalent to a linear equation. Solve the equation

$
\begin{equation}
\begin{aligned}
\frac{1}{t-1} + \frac{t}{3t-2} &= \frac{1}{2} && \text{Get the LCD of the left side}\\
\\
\frac{3t-2+t(t-1)}{(t-1)(3t-2)} &= \frac{1}{2} && \text{Simplify}\\
\\
\frac{3t-2+t^2-t}{(t-1)(3t-2)} &= \frac{1}{2} && \text{Combine like terms}\\
\\
\frac{t^2 + 2t - 2}{(t-1)(3t-2)} &= \frac{1}{2} && \text{Factor the numerator}\\
\\
\frac{\cancel{(t-1)}(t+2)}{\cancel{(t-1)}(3t-2)} &= \frac{1}{2} && \text{Cancel out like terms}\\
\\
\frac{t+2}{3t-2} &= \frac{1}{2} && \text{Multiply both sides by } 2(3t-2)\\
\\
2 (\cancel{3t-2}) & \left[ \frac{t+2}{\cancel{3t-2}} = \frac{1}{\cancel{2}} \right] \cancel{2} (3t - 2) && \text{Simplify}\\
\\
2(t+2) &= 3t -2 && \text{Apply Distributive property}\\
\\
2t +4 &= 3t - 2&& \text{Combine like terms}\\
\\
2t - 3t &= -4 -2 && \text{Simplify}\\
\\
-t &= -6 && \text{Multiply both sides by -1}\\
\\
-1 & [ -t = -6 ] -1 && \text{Simplify}\\
\\
t &= 6
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...