Saturday, October 24, 2015

College Algebra, Chapter 5, 5.3, Section 5.3, Problem 14

Evaluate the expression $\displaystyle \log_3 100 - \log_3 18 - \log_3 50$


$
\begin{equation}
\begin{aligned}

\log_3 100 - \log_3 18 - \log_3 50 =& \log_3 100 - (\log_3 18 + \log_3 50)
&&
\\
\\
\log_3 100 - \log_3 18 - \log_3 50 =& \log_3 100 - \log_3 (18 \cdot 50)
&& \text{Law of Logarithms } \log_a (AB) = \log_a A + \log_a B
\\
\\
\log_3 100 - \log_3 18 - \log_3 50 =& \log_3 \left( \frac{100}{900} \right)
&& \text{Law of Logarithms } \log_a \left( \frac{A}{B} \right) = \log_a A - \log_a B
\\
\\
\log_3 100 - \log_3 18 - \log_3 50 =& \log_3 \left( \frac{1}{9} \right)
&& \text{Simplify}
\\
\\
\log_3 100 - \log_3 18 - \log_3 50 =& -2
&& \text{Because } 3^{-2} = \frac{1}{9}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...