Sunday, November 4, 2018

Calculus of a Single Variable, Chapter 8, 8.3, Section 8.3, Problem 41

Indefinite integrals are written in the form of int f(x) dx = F(x) +C
where: f(x) as the integrand
F(x) as the anti-derivative function
C as the arbitrary constant known as constant of integration
For the given problem: int cos(6x)cos(2x) dx has a integrand in a form of trigonometric function. To evaluate this, we apply the identity:
cos(A)cos(B) =[cos(A+B) +cos(A-B)]/2
The integral becomes:
int cos(6x)cos(2x) dx = int[cos(6x+2x) +cos(6x-2x)]/2dx

Apply the basic properties of integration: int c*f(x) dx= c int f(x) dx .
int[cos(6x+2x) +cos(6x-2x)]/2dx = 1/2int[cos(6x+2x) +cos(6x-2x)]dx
Apply the basic integration property: int (u+v) dx = int (u) dx + int (v) dx .
1/2 *[intcos(6x+2x) dx+int cos(6x-2x)dx]
Then apply u-substitution to be able to apply integration formula for cosine function: int cos(u) du= sin(u) +C .
For the integral: int cos(6x+2x) dx, we let u = 6x+2x =8x then du= 8 dx or (du)/8 =dx .
intcos(6x+2x) dx=intcos(8x) dx
=intcos(u) *(du)/8
= 1/8 int cos(u)du
= 1/8 sin(u) +C
Plug-in u =8x on 1/8 sin(u) +C , we get:
intcos(6x+2x) dx=1/8 sin(8x) +C
For the integral: intcos(6x-2x) dx , we let u = 6x-2x =4x then du= 4 dx or (du)/4 =dx .
intcos(6x-2x) dx=intcos(4x) dx
=intcos(u) *(du)/4
= 1/4 int cos(u)du
= 1/4 sin(u) +C
Plug-in u =4x on 1/4 sin(u) +C , we get:
intcos(6x-2x) dx=1/4 sin(4x) +C
Combing the results , we get the indefinite integral as:
1/2 *[intcos(6x+2x) dx+int cos(6x-2x)dx] = 1/2*[1/8 sin(8x) +1/4 sin(4x)] +C
or 1/16 sin(8x) +1/8 sin(4x) +C

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...