Thursday, November 22, 2018

Single Variable Calculus, Chapter 5, 5.5, Section 5.5, Problem 46

Find the definite integral $\displaystyle \int^a_0 x \sqrt{a^2 - x^2} dx$

Let $u = a^2 - x^2$, then $du = -2x dx$, so $\displaystyle xdx = \frac{-du}{2}$. When $x = 0, u =a^2$ and when $x = a, u = 0$. Thus,



$
\begin{equation}
\begin{aligned}

\int^a_0 x \sqrt{a^2 - x^2} dx =& \int^a_0 \sqrt{a^2 - x^2} xdx
\\
\\
\int^a_0 x \sqrt{a^2 - x^2} dx =& \int^a_0 \sqrt{u} - \frac{du}{2}
\\
\\
\int^a_0 x \sqrt{a^2 - x^2} dx =& \frac{-1}{2} \int^a_0 u^{\frac{1}{2}} du
\\
\\
\int^a_0 x \sqrt{a^2 - x^2} dx =& \frac{-1}{2} \left[ \frac{u^{\frac{1}{2} + 1}}{\displaystyle \frac{1}{2} + 1} \right]^a_0
\\
\\
\int^a_0 x \sqrt{a^2 - x^2} dx =& \frac{-1}{2} \left[ \frac{u^{\frac{3}{2}}}{\displaystyle \frac{3}{2}} \right]^a_0
\\
\\
\int^a_0 x \sqrt{a^2 - x^2} dx =& \left[ \frac{-1}{\cancel{2}} \cdot \frac{\cancel{2}u^{\frac{3}{2}}}{3} \right]^a_0
\\
\\
\int^a_0 x \sqrt{a^2 - x^2} dx =& \left[ \frac{-u^{\frac{3}{2}}}{3} \right]^a_0
\\
\\
\int^a_0 x \sqrt{a^2 - x^2} dx =& \frac{-a^{\frac{3}{2}}}{3} - \frac{(-0)^{\frac{3}{2}}}{3}
\\
\\
\int^a_0 x \sqrt{a^2 - x^2} dx =& \frac{-a^{\frac{3}{2}}}{3}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...