Saturday, November 17, 2018

Calculus of a Single Variable, Chapter 8, 8.4, Section 8.4, Problem 35

Recall that indefinite integral follows int f(x) dx = F(x) +C where:
f(x) as the integrand function
F(x) as the antiderivative of f(x)
C as the constant of integration.
The given integral problem: int arcsec(2x)dx resembles one of the formulas from the integration table. We follow the integral formula for inverse secant function as:
int arcsec(u) du =u*arcsec(u) - ln|u+sqrt(u^2-1)|+C
or u*arcsec(u)-cosh^(-1)|x|+C
For easier comparison, we may apply u-substitution by letting: u = 2x then du = 2 dx or (du)/2 =dx .
Plug-in the values, we get:
int arcsec(2x)dx=int arcsec(u) * (du)/2
Apply the basic integration property: int c*f(x) dx = c int f(x) dx .
int arcsec(u) * (du)/2= 1/2int arcsec(u) du
Apply aforementioned integral formula for inverse secant function:
1/2int arcsec(u) du =1/2*[u*arcsec(u) - ln|u+sqrt(u^2-1)|]+C
=(u*arcsec(u))/2 -( ln|u+sqrt(u^2-1)|)/2+C
Plug-in u =2x on (u*arcsec(u))/2 -( ln|u+sqrt(u^2-1)|)/2+C , we get the indefinite integral as:
int arcsec(2x)dx =(2x*arcsec(2x))/2 -(ln|2x+sqrt((2x)^2-1)|)/2+C
=xarcsec(2x) -(ln|2x+sqrt(4x^2-1)|)/2+C

Another form of indefinite integral:
1/2int arcsec(u) du= 1/2 *[u*arcsec(u)-cosh^(-1)|x|]+C
=(u*arcsec(u))/2-(cosh^(-1)|x|)/2+C
Plug-in u =2x on (u*arcsec(u))/2-(cosh^(-1)|x|)/2+C , we get:
int arcsec(2x)dx =(2x*arcsec(2x))/2-(cosh^(-1)|2x|)/2+C
=x*arcsec(2x)-(cosh^(-1)|2x|)/2+C

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...