Monday, November 19, 2018

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 40

Determine the integral csc4xcot6xdx


csc4xcot6xdx=csc2xcsc2xcot6xdxApply Trigonometric Identities csc2x=1+cot2xcsc4xcot6xdx=csc2x(1+cot2x)cot6xdxcsc4xcot6xdx=csc2x(cot6x+cot8x)dx


Let u=cotx, then du=csc2xdx, so csc2xdx=du. Therefore,


csc2x(cot6x+cot8x)dx=(u6+u8)ducsc2x(cot6x+cot8x)dx=(u6+u8)ducsc2x(cot6x+cot8x)dx=(u6+16+1+u8+18+1)+ccsc2x(cot6x+cot8x)dx=u77u99+ccsc2x(cot6x+cot8x)dx=(cotx)77(cotx)99+ccsc2x(cot6x+cot8x)dx=cot7x7cot9x9+c

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...