Wednesday, November 14, 2018

College Algebra, Chapter 1, 1.4, Section 1.4, Problem 68

Find all solutions of the equation $z + 4 + \frac{12}{z} = 0$ and express them in the form $a + bi$.


$
\begin{equation}
\begin{aligned}

z + 4 + \frac{12}{z} =& 0
&& \text{Given}
\\
\\
z^2 + 4z + 12 =& 0
&& \text{Multiply both sides of the equation by } z
\\
\\
z^2 + 4z =& -12
&& \text{Subtract } 12
\\
\\
z^2 + 4z + 4 =& -12 + 4
&& \text{Complete the square: add } \left( \frac{4}{2} \right)^2 = 4
\\
\\
(z + 2)^2 =& -8
&& \text{Perfect square}
\\
\\
z + 2 =& \pm \sqrt{-8}
&& \text{Take the square root}
\\
\\
z + 2 =& \pm \sqrt{8i^2}
&& \text{Recall that } i^2 = -1
\\
\\
z =& -2 \pm 2 \sqrt{2} i
&& \text{Subtract } 2
\\
\\
(z + (2 + 2 \sqrt{2} i))& (z + (2 - 2 \sqrt{2} i)) = 0
&&


\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...