Monday, November 26, 2018

Single Variable Calculus, Chapter 2, 2.3, Section 2.3, Problem 47

Given the function $f(x) = \displaystyle \frac{x^2-1}{|x-1|}$

a.) Find $(i) \lim\limits_{x \to 1^+} f(x) \qquad (ii) \lim\limits_{x \to 1^-} f(x)$



$
\begin{equation}
\begin{aligned}
(i) \lim\limits_{x \to 1^+} f(x) & = \lim\limits_{x \to 1^+} \displaystyle\frac{x^2-1}{x-1}\\
& = \lim\limits_{x \to 1^+} \displaystyle\frac{(x+1)\cancel{(x-1)}}{\cancel{(x-1)}}\\
& = \lim\limits_{x \to 1^+} (x+1)\\
& = 1+1\\
& = 2\\

(ii) \lim\limits_{x \to 1^-} f(x) & = \lim\limits_{x \to 1^-} \displaystyle \frac{x^2-1}{-(x-1)}\\
& = \lim\limits_{x \to 1^-} \displaystyle\frac{(x+1)\cancel{(x-1)}}{-\cancel{(x-1)}}\\
& = \lim\limits_{x \to 1^-} - (x+1)\\
& = \lim\limits_{x \to 1^-} -x-1\\
& = -1 - 1\\
& = -2
\end{aligned}
\end{equation}
$


b.)Is the $\lim\limits_{x \to 1} f(x)$ exist?
$\lim\limits_{x \to 1} f(x)$ does not exist because the left and right hand limits are different


c.) Sketch the graph of $f$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...