Tuesday, November 20, 2018

Single Variable Calculus, Chapter 2, 2.2, Section 2.2, Problem 4

The graph of the function $f$ is given below, state the value of each quantity, if it exists.
If it does not exist, explain why.


$
\begin{equation}
\begin{aligned}
\text{a.) }& \lim\limits_{x \rightarrow 0} f(x)\\
\text{b.) }& \lim\limits_{x \rightarrow 3^-} f(x)\\
\text{c.) }& \lim\limits_{x \rightarrow 3^+} f(x)\\
\text{d.) }& \lim\limits_{x \rightarrow 3} f(x) \\
\text{e.) }& f(3)
\end{aligned}
\end{equation}
$





a. Referring to the graph given $\lim\limits_{x \rightarrow 0} f(x) = 3$

b. Referring to the graph given $\lim\limits_{x \rightarrow 3^-}f(x) = 4$

c. Referring to the graph given $\lim\limits_{x \rightarrow 3+}f(x) = 2$

d. Referring to the graph given $\lim\limits_{x \rightarrow 3}f(x)$ does not exist because left and right limits are different.

e. Referring to the graph given $f(3) = 3$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...